Quantification of glutamine in proteins and peptides using enzymatic hydrolysis and reverse-phase high-performance liquid chromatography.
An enzymatic method for hydrolyzing bovine milk proteins was developed. Purified milk proteins (alpha-lactalbumin, beta-lactoglobulin, and beta-casein) were hydrolyzed in 0.1 M Hepes buffer (pH 7.5) containing pronase E, aminopeptidase M, and prolidase at 37 degrees C for 20 h. Free glutamine and other amino acids were derivatized with phenylisothiocyanate and separated using a C18 Pico-Tag column. Amino acids were eluted from the column with an aqueous sodium acetate-acetonitrile gradient with detection at 254 nm. Glutamine recoveries from hydrolyzed alpha-lactalbumin, beta-lactoglobulin, and beta-casein were 78 +/- 4, 98 +/- 3, and 101 +/- 3% of the theoretical values, respectively. The recoveries of most amino acids were comparable with those obtained using acid hydrolysis, except for the recoveries of proline and acidic amino acids. These peptide bonds appeared to be resistant to enzymatic hydrolysis and also to inhibit the hydrolysis of adjacent amino acids. Free glutamine was found to be very stable (97% recovery) under the enzymatic hydrolysis conditions.[1]References
- Quantification of glutamine in proteins and peptides using enzymatic hydrolysis and reverse-phase high-performance liquid chromatography. Tsao, M., Otter, D.E. Anal. Biochem. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg