Protein footprinting at cysteines: probing ATP-modulated contacts in cysteine-substitution mutants of yeast DNA topoisomerase II.
Cysteine-substitution mutants of yeast DNA topoisomerase II were used to test footprinting of the enzyme by 2-nitro-5-thiocyanobenzoate, which cyanylates exposed cysteines in a native protein for peptide cleavage at the cyanylated sites upon unfolding and incubating the protein at pH 9. For a mutant enzyme containing a single cysteine, the extent of peptide cleavage was found to reflect the accessibility of the residue in the native protein. For proteins with multiple cysteines, however, such a correlation was obscured by the transfer of cyano groups from modified to unmodified cysteines during incubation of the unfolded protein at pH 9; accessibilities of the cysteinyl residues in a native protein could be assessed only if cyano shuffling was prevented by blocking uncyanylated sulfhydryls with a second thiol reagent. The successive use of two reagents in cysteine footprinting was applied in probing the ATP-modulated formation of contacts in yeast DNA topoisomerase II.[1]References
- Protein footprinting at cysteines: probing ATP-modulated contacts in cysteine-substitution mutants of yeast DNA topoisomerase II. Tu, B.P., Wang, J.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg