The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family.
The DmpA (d-aminopeptidase A) protein produced by Ochrobactrum anthropi hydrolyses p-nitroanilide derivatives of glycine and d-alanine more efficiently than that of l-alanine. When regular peptides are utilized as substrates, the enzyme behaves as an aminopeptidase with a preference for N-terminal residues in an l configuration, thus exemplifying an interesting case of stereospecificity reversal. The best-hydrolysed substrate is l-Ala-Gly-Gly, but tetra- and penta-peptides are also efficiently hydrolysed. The gene encodes a 375-residue precursor, but the active enzyme contains two polypeptides corresponding to residues 2-249 (alpha-subunit) and 250-375 (beta-subunit) of the precursor. Residues 249 and 250 are a Gly and a Ser respectively, and various substitutions performed by site-directed mutagenesis result in the production of an uncleaved and inactive protein. The N-terminal Ser residue of the beta-subunit is followed by a hydrophobic peptide, which is predicted to form a beta-strand structure. All these properties strongly suggest that DmpA is an N-terminal amidohydrolase. An exploration of the databases highlights the presence of a number of open reading frames encoding related proteins in various bacterial genomes. Thus DmpA is very probably the prototype of an original family of N-terminal hydrolases.[1]References
- The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family. Fanuel, L., Goffin, C., Cheggour, A., Devreese, B., Van Driessche, G., Joris, B., Van Beeumen, J., Frère, J.M. Biochem. J. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg