Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals.
E2F transcription factor is subject to stringent regulation by a variety of molecules. We recently observed that prohibitin, a potential tumor suppressor protein, binds to the retinoblastoma (Rb) protein and represses E2F transcriptional activity. Here we demonstrate that prohibitin requires the marked box region of E2F for repression; further, prohibitin can effectively inhibit colony formation induced by overexpression of E2F1 in T47D cells. Prohibitin was also found to interact with the signaling kinase c-Raf-1, and Raf-1 could effectively reverse prohibitin- mediated repression of E2F activity. Agents such as E1A, p38 kinase, and cyclins D and E had no effect on prohibitin- mediated repression of E2F1, but all of these molecules could reverse Rb function. Similarly, stimulation of the immunoglobulin M signaling pathway in Ramos cells could inactivate prohibitin, but this had no effect on Rb function. Serum stimulation of quiescent Ramos cells inactivated Rb and prohibitin with different kinetics; further, while the serum-dependent inactivation of Rb was dependent on cyclin-dependent kinase activity, the inactivation of prohibitin was not. We believe that prohibitin is a novel regulator of E2F function which channels specific signaling cascades to the cell cycle regulatory machinery.[1]References
- Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Wang, S., Nath, N., Fusaro, G., Chellappan, S. Mol. Cell. Biol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg