A molecular pathway leading to endoderm formation in zebrafish.
BACKGROUND: Several potentially important regulators of vertebrate endoderm development have been identified, including Activin-related growth factors and their receptors; transcriptional regulators encoded by the genes Mixer, Xsox17, and HNF3beta; zebrafish One-eyed pinhead (Oep), a member of the Cripto/FRL-1/Cryptic family of epidermal growth factor related proteins (EGF-CFC); and the product of the zebrafish locus casanova, which plays an essential cell-autonomous role in endoderm formation. RESULTS: Using overexpression studies and the analysis of different zebrafish mutants, we have assembled a molecular pathway that leads to endoderm formation. We report that a zebrafish Sox17 homologue is expressed during gastrulation exclusively in the endoderm and that casanova mutants lack all sox17 expression. Overexpression of mixer induces ectopic sox17- expressing cells in wild-type embryos and promotes endoderm formation in oep mutants, but does not rescue sox17 expression or endoderm formation in casanova mutants. Overexpression of a constitutively active form of the type I transforming growth factor beta (TGF-beta) receptor TARAM-A also promotes sox17 expression in wild-type and oep mutant embryos, but not in casanova mutants. We also show that the Nodal-related molecules Cyclops and Squint and the transmembrane protein Oep are essential for normal mixer expression. CONCLUSIONS: The data indicate that the following pathway leads to zebrafish endoderm formation: Cyclops and Squint activate receptors such as TARAM-A; Oep also appears to act upstream of such receptors; signals transduced by these receptors lead to the expression of mixer, Mixer then acts through casanova to promote the expression of sox17 and differentiation of the endoderm.[1]References
- A molecular pathway leading to endoderm formation in zebrafish. Alexander, J., Stainier, D.Y. Curr. Biol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg