The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Zebrafish

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Zebrafish

 

Psychiatry related information on Zebrafish

 

High impact information on Zebrafish

  • Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2) [10].
  • To elucidate the roles of eya4 in heart function, we studied zebrafish embryos injected with antisense morpholino oligonucleotides [11].
  • In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development [12].
  • We indentified and characterized a new gene, NIPBL, that is mutated in individuals with CdLS and determined its structure and the structures of mouse, rat and zebrafish homologs [13].
  • Here we show that the gene u-boot (ubo), a mutation in which disrupts the induction of embryonic slow-twitch fibers, encodes the zebrafish homolog of Blimp-1, a SET domain-containing transcription factor that promotes the terminal differentiation of B lymphocytes in mammals [14].
 

Chemical compound and disease context of Zebrafish

 

Biological context of Zebrafish

 

Anatomical context of Zebrafish

 

Associations of Zebrafish with chemical compounds

  • Genetic screening identifies zebrafish mutants, such as fat free, that show normal digestive organ morphology but severely reduced phospholipid and cholesterol processing [29].
  • Here, I outline the progress that has been made in answering these questions using the zebrafish pronephros as a simple, accessible model of nephron development [30].
  • Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors [31].
  • Axial (HNF3beta) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter [32].
  • In zebrafish, misexpression of Wnt-4, -5, and -11 stimulates calcium (Ca2+) release, defining the Wnt/Ca2+ class [33].
 

Gene context of Zebrafish

  • We show that the zebrafish silent heart (sih) mutation affects the gene tnnt2 [34].
  • Here we report target-selected inactivation of the dicer1 gene in zebrafish [35].
  • The zebrafish mutant represents the first genetically 'accurate' animal model of HEP, and should be useful for studying the pathogenesis of UROD deficiency and evaluating gene therapy vectors [36].
  • Functional knockdown of zebrafish tbx5 through the use of an antisense oligonucleotide resulted in a failure to initiate fin bud formation, leading to the complete loss of pectoral fins [37].
  • Blocking Tsg function in zebrafish with morpholino oligonucleotides causes ventralization similar to that produced by chordin mutants [38].
 

Analytical, diagnostic and therapeutic context of Zebrafish

References

  1. Effective targeted gene 'knockdown' in zebrafish. Nasevicius, A., Ekker, S.C. Nat. Genet. (2000) [Pubmed]
  2. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Lin, S., Gaiano, N., Culp, P., Burns, J.C., Friedmann, T., Yee, J.K., Hopkins, N. Science (1994) [Pubmed]
  3. Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Dorsky, R.I., Raible, D.W., Moon, R.T. Genes Dev. (2000) [Pubmed]
  4. Tumor induction by carcinogenic agents in aquarium fish. Pliss, G.B., Khudoley, V.V. J. Natl. Cancer Inst. (1975) [Pubmed]
  5. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Peterson, R.T., Shaw, S.Y., Peterson, T.A., Milan, D.J., Zhong, T.P., Schreiber, S.L., MacRae, C.A., Fishman, M.C. Nat. Biotechnol. (2004) [Pubmed]
  6. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. McDearmid, J.R., Drapeau, P. J. Neurophysiol. (2006) [Pubmed]
  7. Characterization of the Huntington's disease (HD) gene homologue in the zebrafish Danio rerio. Karlovich, C.A., John, R.M., Ramirez, L., Stainier, D.Y., Myers, R.M. Gene (1998) [Pubmed]
  8. A zebrafish Id homologue and its pattern of expression during embryogenesis. Sawai, S., Campos-Ortega, J.A. Mech. Dev. (1997) [Pubmed]
  9. Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Levin, E.D., Chrysanthis, E., Yacisin, K., Linney, E. Neurotoxicology and teratology. (2003) [Pubmed]
  10. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Ross, A.J., May-Simera, H., Eichers, E.R., Kai, M., Hill, J., Jagger, D.J., Leitch, C.C., Chapple, J.P., Munro, P.M., Fisher, S., Tan, P.L., Phillips, H.M., Leroux, M.R., Henderson, D.J., Murdoch, J.N., Copp, A.J., Eliot, M.M., Lupski, J.R., Kemp, D.T., Dollfus, H., Tada, M., Katsanis, N., Forge, A., Beales, P.L. Nat. Genet. (2005) [Pubmed]
  11. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Schönberger, J., Wang, L., Shin, J.T., Kim, S.D., Depreux, F.F., Zhu, H., Zon, L., Pizard, A., Kim, J.B., Macrae, C.A., Mungall, A.J., Seidman, J.G., Seidman, C.E. Nat. Genet. (2005) [Pubmed]
  12. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Simons, M., Gloy, J., Ganner, A., Bullerkotte, A., Bashkurov, M., Krönig, C., Schermer, B., Benzing, T., Cabello, O.A., Jenny, A., Mlodzik, M., Polok, B., Driever, W., Obara, T., Walz, G. Nat. Genet. (2005) [Pubmed]
  13. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Tonkin, E.T., Wang, T.J., Lisgo, S., Bamshad, M.J., Strachan, T. Nat. Genet. (2004) [Pubmed]
  14. The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Baxendale, S., Davison, C., Muxworthy, C., Wolff, C., Ingham, P.W., Roy, S. Nat. Genet. (2004) [Pubmed]
  15. Oxygen deprivation causes suspended animation in the zebrafish embryo. Padilla, P.A., Roth, M.B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  16. Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Holder, N., Hill, J. Development (1991) [Pubmed]
  17. Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. Reimers, M.J., Hahn, M.E., Tanguay, R.L. J. Biol. Chem. (2004) [Pubmed]
  18. Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1. Prasch, A.L., Tanguay, R.L., Mehta, V., Heideman, W., Peterson, R.E. Mol. Pharmacol. (2006) [Pubmed]
  19. Acute renal failure in zebrafish: a novel system to study a complex disease. Hentschel, D.M., Park, K.M., Cilenti, L., Zervos, A.S., Drummond, I., Bonventre, J.V. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  20. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Zhang, J., Talbot, W.S., Schier, A.F. Cell (1998) [Pubmed]
  21. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Otto, E.A., Schermer, B., Obara, T., O'Toole, J.F., Hiller, K.S., Mueller, A.M., Ruf, R.G., Hoefele, J., Beekmann, F., Landau, D., Foreman, J.W., Goodship, J.A., Strachan, T., Kispert, A., Wolf, M.T., Gagnadoux, M.F., Nivet, H., Antignac, C., Walz, G., Drummond, I.A., Benzing, T., Hildebrandt, F. Nat. Genet. (2003) [Pubmed]
  22. Patterning the zebrafish axial skeleton requires early chordin function. Fisher, S., Halpern, M.E. Nat. Genet. (1999) [Pubmed]
  23. Wellcome Trust funds bid to unravel zebrafish genome. Butler, D. Nature (2000) [Pubmed]
  24. A homeobox gene essential for zebrafish notochord development. Talbot, W.S., Trevarrow, B., Halpern, M.E., Melby, A.E., Farr, G., Postlethwait, J.H., Jowett, T., Kimmel, C.B., Kimelman, D. Nature (1995) [Pubmed]
  25. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Chang, C.P., Neilson, J.R., Bayle, J.H., Gestwicki, J.E., Kuo, A., Stankunas, K., Graef, I.A., Crabtree, G.R. Cell (2004) [Pubmed]
  26. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Hatta, K., Kimmel, C.B., Ho, R.K., Walker, C. Nature (1991) [Pubmed]
  27. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Knaut, H., Werz, C., Geisler, R., Nüsslein-Volhard, C. Nature (2003) [Pubmed]
  28. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Kim, C.H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C., Driever, W., Chitnis, A.B. Nature (2000) [Pubmed]
  29. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Farber, S.A., Pack, M., Ho, S.Y., Johnson, I.D., Wagner, D.S., Dosch, R., Mullins, M.C., Hendrickson, H.S., Hendrickson, E.K., Halpern, M.E. Science (2001) [Pubmed]
  30. Making a zebrafish kidney: a tale of two tubes. Drummond, I. Trends Cell Biol. (2003) [Pubmed]
  31. Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors. Westerfield, M., Liu, D.W., Kimmel, C.B., Walker, C. Neuron (1990) [Pubmed]
  32. Axial (HNF3beta) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. Chang, B.E., Blader, P., Fischer, N., Ingham, P.W., Strähle, U. EMBO J. (1997) [Pubmed]
  33. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M., Slusarski, D.C. J. Cell Biol. (2003) [Pubmed]
  34. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Sehnert, A.J., Huq, A., Weinstein, B.M., Walker, C., Fishman, M., Stainier, D.Y. Nat. Genet. (2002) [Pubmed]
  35. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Wienholds, E., Koudijs, M.J., van Eeden, F.J., Cuppen, E., Plasterk, R.H. Nat. Genet. (2003) [Pubmed]
  36. A zebrafish model for hepatoerythropoietic porphyria. Wang, H., Long, Q., Marty, S.D., Sassa, S., Lin, S. Nat. Genet. (1998) [Pubmed]
  37. T-box gene tbx5 is essential for formation of the pectoral limb bud. Ahn, D.G., Kourakis, M.J., Rohde, L.A., Silver, L.M., Ho, R.K. Nature (2002) [Pubmed]
  38. Twisted gastrulation is a conserved extracellular BMP antagonist. Ross, J.J., Shimmi, O., Vilmos, P., Petryk, A., Kim, H., Gaudenz, K., Hermanson, S., Ekker, S.C., O'Connor, M.B., Marsh, J.L. Nature (2001) [Pubmed]
  39. Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Jowett, T., Lettice, L. Trends Genet. (1994) [Pubmed]
  40. Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. Molven, A., Njølstad, P.R., Fjose, A. EMBO J. (1991) [Pubmed]
  41. Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Duan, C., Ding, J., Li, Q., Tsai, W., Pozios, K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  42. Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Yoder, J.A., Mueller, M.G., Wei, S., Corliss, B.C., Prather, D.M., Willis, T., Litman, R.T., Djeu, J.Y., Litman, G.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  43. Nested expression domains for odorant receptors in zebrafish olfactory epithelium. Weth, F., Nadler, W., Korsching, S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
 
WikiGenes - Universities