The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Primitive organization of cytosolic Ca(2+) signals in hepatocytes from the little skate Raja erinacea.

Cytosolic Ca(2+) (Ca(i)(2+)) signals begin as polarized, inositol 1, 4,5-trisphosphate (InsP3)-mediated Ca(i)(2+) waves in mammalian epithelia, and this signaling pattern directs secretion together with other cell functions. To investigate whether Ca(i)(2+) signaling is similarly organized in elasmobranch epithelia, we examined Ca(i)(2+) signaling patterns and InsP3 receptor (InsP3R) expression in hepatocytes isolated from the little skate, Raja erinacea. Ca(i)(2+) signaling was examined by confocal microscopy, InsP3R expression by immunoblot, and the subcellular distribution of InsP3Rs by immunochemistry. ATP induced a rapid increase in Ca(i)(2+) in skate hepatocytes, as it does in mammalian hepatocytes. Unlike in mammalian hepatocytes, however, the Ca(i)(2+) increase in skate hepatocytes began randomly throughout the cell rather than in the apical region. In cells loaded with heparin ATP-induced Ca(i)(2+) signals were inhibited, but de-N-sulfated heparin was not inhibitory, suggesting that the increases in Ca(i)(2+) were mediated by InsP3. Immunoblot analysis showed that the type I but not the types II or III InsP3R was expressed in skate liver. Confocal immunofluorescence revealed that the InsP3R was distributed throughout the hepatocyte, rather than concentrated apically as in mammalian epithelia. These findings demonstrate that ATP-induced Ca(i)(2+) signals are mediated by InsP3 in skate hepatocytes, as they are in mammalian hepatocytes. However, in skate hepatocytes Ca(i)(2+) signals begin at loci throughout the cell rather than as an organized apical-to-basal Ca(i)(2+) wave, which is probably because the InsP3R is distributed throughout these cells. This primitive organization of Ca(i)(2+) signaling may in part explain the observation that Ca(2+)-mediated events such as secretion occur much less efficiently in elasmobranchs than in mammals.[1]

References

  1. Primitive organization of cytosolic Ca(2+) signals in hepatocytes from the little skate Raja erinacea. Nathanson, M.H., O'Neill, A.F., Burgstahler, A.D. J. Exp. Biol. (1999) [Pubmed]
 
WikiGenes - Universities