Clozapine reversal of the deficits in coordinated movement induced by D2 receptor blockade does not depend upon antagonism of alpha2 adrenoceptors.
Alpha2 adrenoceptor antagonists have been shown to reverse D2-antagonist-induced catalepsy leading to the hypothesis that the alpha2 antagonistic properties of clozapine underlie the compound's lack of extrapyramidal symptoms in the clinic. The potential for alpha2 antagonists to reverse the motor deficits produced by D2 antagonists (loxapine and haloperidol) was further investigated using a rotating rod (3.5 rpm) test in male Sprague-Dawley rats that requires coordinated movement to perform the task. The effects of loxapine (0.3 mg/kg, s.c.) were dose-dependently and statistically significantly reversed by the administration of clozapine (1,3, 10 mg/kg, i.p., n=10). Isoloxapine (1 mg/kg, i.p.), RX 821002 (2-methoxy-idazoxan; 5.6 mg/kg, i.p.) and yohimbine (5.6 mg/kg, i.p.) did not reverse the effects of loxapine. Furthermore, the motor deficits produced by haloperidol could not be reversed by RX 821002 (5.6 mg/kg, i.p.) or yohimbine (5.6 mg/kg, i.p.). On the other hand, scopolamine (0.03-0.3 mg/kg, i.p.) dose-dependently and statistically significantly antagonised the effects of both loxapine and haloperidol. These results indicate that the anticholinergic rather than the alpha2 antagonistic properties of clozapine may mediate the reversal of the motor deficit induced by D2 antagonism in a rotating rod test.[1]References
- Clozapine reversal of the deficits in coordinated movement induced by D2 receptor blockade does not depend upon antagonism of alpha2 adrenoceptors. McAllister, K.H., Rey, B. Naunyn Schmiedebergs Arch. Pharmacol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg