The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Catalepsy

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Catalepsy

 

Psychiatry related information on Catalepsy

  • To test this hypothesis, the effects of SCH 32615, an enkephalinase inhibitor, on DA antagonist-induced catalepsy, DA D-1 agonist-induced non-stereotyped grooming, and DA D-2 agonist-induced stereotyped behavior were studied [6].
  • These results strongly suggest that carteolol improves haloperidol-induced catalepsy via its beta-adrenoceptor antagonistic activity and is expected to be effective in the treatment of akathisia without attenuating neuroleptic-induced antipsychotic effects due to its postsynaptic dopamine receptor antagonistic activity [7].
  • Nitric oxide synthase (NOS) inhibitors interfere with motor activity, disrupting rodent exploratory behavior and inducing catalepsy [8].
  • IT alfentanil in saline produced a dose-dependent increase in the HP response latency and this effect was accompanied by a similar dose-dependent increase in the incidence of catalepsy and blockade of corneal responses, indicating a rapid supraspinal redistribution [9].
  • Like CCK-8, CER and some of its analogues produce many behavioural effects in mammals: inhibition of intake of food and water; antinociception; sedation; catalepsy; ptosis, antistereotypic, anticonvulsive and tremorolytic effects; inhibition of self-stimulation [10].
 

High impact information on Catalepsy

  • Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors [11].
  • Pavlovian conditional tolerance to haloperidol catalepsy: evidence of dynamic adaptation in the dopaminergic system [12].
  • The monolateral microinjection of the [d-Ala2]] analog (3 to 6 micrograms) into the caudate nucleus increased the concentration of dihydroxyphenylacetic acid in the injected side, whereas bilateral injection increased the concentration of this compound in both caudate nuclei and caused catalepsy [13].
  • However, we found that catalepsy, which is thought to reflect the EPS of typical APDs, is unaffected in NT-null mutant mice, suggesting that NT does not contribute to the generation of EPS [14].
  • By contrast, haloperidol, a typical neuroleptic that acts preferentially at D2-class receptors, remains effective in inducing catalepsy and striatal Fos/Jun expression in the D1 mutants, and these behavioral and neural effects can be blocked by D2 dopamine receptor agonists [15].
 

Chemical compound and disease context of Catalepsy

  • Previous lesion studies have shown that the dopamine receptors in the striatum are involved in this neuroleptic-induced catalepsy [11].
  • Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat [16].
  • Haloperidol- but not SCH 23390-induced catalepsy was attenuated by intrastriatally administered 7-chlorokynurenate [17].
  • Both the NMDA antagonist (-)2-amino-7-phosphonoheptanoate [(-)AP7], and the GABA agonist muscimol, but not the muscarinic antagonist scopolamine, induced catalepsy and limb rigidity [18].
  • Both the (-)AP7- and muscimol-induced catalepsy were antagonized by coadministration of NMDA and the GABA antagonist bicuculline [18].
 

Biological context of Catalepsy

 

Anatomical context of Catalepsy

 

Gene context of Catalepsy

 

Analytical, diagnostic and therapeutic context of Catalepsy

References

  1. Ascorbic acid and the behavioral response to haloperidol: implications for the action of antipsychotic drugs. Rebec, G.V., Centore, J.M., White, L.K., Alloway, K.D. Science (1985) [Pubmed]
  2. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Cravatt, B.F., Demarest, K., Patricelli, M.P., Bracey, M.H., Giang, D.K., Martin, B.R., Lichtman, A.H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  3. Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Xu, R., Hranilovic, D., Fetsko, L.A., Bucan, M., Wang, Y. Mol. Psychiatry (2002) [Pubmed]
  4. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Ossowska, K., Konieczny, J., Wolfarth, S., Wierońska, J., Pilc, A. Neuropharmacology (2001) [Pubmed]
  5. AMT catalepsy and hypokinesia: interaction with morphine and cocaine. Papeschi, R., Theiss, P., Ayhan, H. Psychopharmacologia. (1976) [Pubmed]
  6. Effects of SCH 32615, an enkephalinase inhibitor, on D-1 and D-2 dopamine receptor-mediated behaviors. Marin, C., Chase, T.N. Neuropharmacology (1995) [Pubmed]
  7. The attenuating effect of carteolol hydrochloride, a beta-adrenoceptor antagonist, on neuroleptic-induced catalepsy in rats. Kikuchi, T., Uwahodo, Y., Tottori, K., Nakai, M., Morita, S. Psychopharmacology (Berl.) (1997) [Pubmed]
  8. Combined treatment of ascorbic acid or alpha-tocopherol with dopamine receptor antagonist or nitric oxide synthase inhibitor potentiates cataleptic effect in mice. Lazzarini, M., Salum, C., Del Bel, E.A. Psychopharmacology (Berl.) (2005) [Pubmed]
  9. Antinociception and side effects of liposome-encapsulated alfentanil after spinal delivery in rats. Wallace, M.S., Yanez, A.M., Ho, R.J., Shen, D.D., Yaksh, T.L. Anesth. Analg. (1994) [Pubmed]
  10. Caerulein and its analogues: neuropharmacological properties. Zetler, G. Peptides (1985) [Pubmed]
  11. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Sanberg, P.R. Nature (1980) [Pubmed]
  12. Pavlovian conditional tolerance to haloperidol catalepsy: evidence of dynamic adaptation in the dopaminergic system. Poulos, C.X., Hinson, R. Science (1982) [Pubmed]
  13. Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkephalins and antagonism by naloxone. Biggio, G., Casu, M., Corda, M.G., Di Bello, C., Gessa, G.L. Science (1978) [Pubmed]
  14. Neurotensin-deficient mice show altered responses to antipsychotic drugs. Dobner, P.R., Fadel, J., Deitemeyer, N., Carraway, R.E., Deutch, A.Y. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  15. Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Moratalla, R., Xu, M., Tonegawa, S., Graybiel, A.M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat. Negri, L., Erspamer, G.F., Severini, C., Potenza, R.L., Melchiorri, P., Erspamer, V. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  17. Behavioral effects mediated by the modulatory glycine site of the NMDA receptor in the anterodorsal striatum and nucleus accumbens. Kretschmer, B.D., Schmidt, W.J. J. Neurosci. (1996) [Pubmed]
  18. The rat ventromedial thalamic nucleus and motor control: role of N-methyl-D-aspartate-mediated excitation, GABAergic inhibition, and muscarinic transmission. Klockgether, T., Schwarz, M., Turski, L., Sontag, K.H. J. Neurosci. (1986) [Pubmed]
  19. The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. Chen, J.F., Moratalla, R., Impagnatiello, F., Grandy, D.K., Cuellar, B., Rubinstein, M., Beilstein, M.A., Hackett, E., Fink, J.S., Low, M.J., Ongini, E., Schwarzschild, M.A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  20. 2-Amino-6-trifluoromethoxy benzothiazole (PK 26124), a proposed antagonist of excitatory amino acid neurotransmission, does not produce phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. Koek, W., Woods, J.H. Neuropharmacology (1988) [Pubmed]
  21. Role of adenosine and N-methyl-D-aspartate receptors in mediating haloperidol-induced gene expression and catalepsy. Chartoff, E.H., Ward, R.P., Dorsa, D.M. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  22. The effects of cortical ablation on multiple unit activity in the striatum following dexamphetamine. Warenycia, M.W., McKenzie, G.M., Murphy, M., Szerb, J.C. Neuropharmacology (1987) [Pubmed]
  23. Sex differences in catalepsy: evidence for hormone-dependent postural mechanisms in haloperidol-treated rats. Field, E.F., Whishaw, I.Q., Pellis, S.M. Behav. Brain Res. (2000) [Pubmed]
  24. Injection of apomorphine into the medial prefrontal cortex of the rat increases haloperidol-induced catalepsy. Bubser, M., Schmidt, W.J. Biol. Psychiatry (1994) [Pubmed]
  25. Regional amino acid distribution in relation to function in insulin hypoglycaemia. Butterworth, R.F., Merkel, A.D., Landreville, F. J. Neurochem. (1982) [Pubmed]
  26. Opiate receptor agonists as modulators of gamma-aminobutyric acid turnover in the nucleus caudatus, globus pallidus and substantia nigra of the rat. Moroni, F., Cheney, D.L., Peralta, E., Costa, E. J. Pharmacol. Exp. Ther. (1978) [Pubmed]
  27. Stimulation of median, but not dorsal, raphe 5-HT1A autoreceptors by the local application of 8-OH-DPAT reverses raclopride-induced catalepsy in the rat. Wadenberg, M.L., Hillegaart, V. Neuropharmacology (1995) [Pubmed]
  28. The transcription factor NGFI-B (Nur77) and retinoids play a critical role in acute neuroleptic-induced extrapyramidal effect and striatal neuropeptide gene expression. Ethier, I., Beaudry, G., St-Hilaire, M., Milbrandt, J., Rouillard, C., Lévesque, D. Neuropsychopharmacology (2004) [Pubmed]
  29. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Valenzano, K.J., Tafesse, L., Lee, G., Harrison, J.E., Boulet, J.M., Gottshall, S.L., Mark, L., Pearson, M.S., Miller, W., Shan, S., Rabadi, L., Rotshteyn, Y., Chaffer, S.M., Turchin, P.I., Elsemore, D.A., Toth, M., Koetzner, L., Whiteside, G.T. Neuropharmacology (2005) [Pubmed]
  30. Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Reavill, C., Kettle, A., Holland, V., Riley, G., Blackburn, T.P. Br. J. Pharmacol. (1999) [Pubmed]
  31. Postsynaptic 5-HT(1A) receptors mediate an increase in locomotor activity in the monoamine-depleted rat. Mignon, L., Wolf, W.A. Psychopharmacology (Berl.) (2002) [Pubmed]
  32. The neurokinin1 receptor antagonist CP-99,994 reduces catalepsy produced by the dopamine D2 receptor antagonist raclopride: correlation with extracellular acetylcholine levels in striatum. Anderson, J.J., Randall, S., Chase, T.N. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  33. Neurotensin induces catalepsy in mice. Snijders, R., Kramarcy, N.R., Hurd, R.W., Nemeroff, C.B., Dunn, A.J. Neuropharmacology (1982) [Pubmed]
  34. FAUC 213, a highly selective dopamine D4 receptor full antagonist, exhibits atypical antipsychotic properties in behavioural and neurochemical models of schizophrenia. Boeckler, F., Russig, H., Zhang, W., Löber, S., Schetz, J., Hübner, H., Ferger, B., Gmeiner, P., Feldon, J. Psychopharmacology (Berl.) (2004) [Pubmed]
  35. 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Invernizzi, R.W., Cervo, L., Samanin, R. Neuropharmacology (1988) [Pubmed]
 
WikiGenes - Universities