Target site search and effective inhibition of leukaemic cell growth by a covalently closed multiple anti-sense oligonucleotide to c-myb.
Systematic secondary structure simulation of a target mRNA sequence is shown to be effective for locating a good anti-sense target site. Multiple selected anti-sense sequences were placed in a single molecule. The anti-sense oligonucleotide (oligo) was covalently closed to avoid exonuclease activities and was designated CMAS (covalently closed multiple anti-sense)-oligo. CMAS-oligo was found to be stable, largely preserving its structural integrity after 24 h of incubation in the presence of either exonuclease III or serum. When human c-myb mRNA was targeted by the c-myb CMAS-oligo, expression of the gene was completely abolished. Further, tumour cell growth was inhibited by 82+/-3% as determined by an MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and by 90+/-1% by [(3)H]thymidine incorporation. When a leukaemic cell line K562 was treated with CMAS-oligo, colony formation on soft agarose was also decreased by 93%. In contrast, treatment with a scrambled control oligo did not significantly inhibit leukaemic cell growth. These results suggest that a rational target site search is possible for an anti-sense oligo and that CMAS-oligo can be employed as an effective anti-sense agent with enhanced stability.[1]References
- Target site search and effective inhibition of leukaemic cell growth by a covalently closed multiple anti-sense oligonucleotide to c-myb. Moon, I.J., Lee, Y., Kwak, C.S., Lee, J.H., Choi, K., Schreiber, A.D., Park, J.G. Biochem. J. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









