The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Thioesterification of 2-arylpropionic acids by recombinant acyl-coenzyme A synthetases (ACS1 and ACS2).

2-Arylpropionic acids are a class of frequently used nonsteroidal anti-inflammatory drugs exhibiting a potent inhibition of cyclooxygenase isoforms supported by the (+)S-enantiomer alone. Nevertheless, some of these compounds in the (-)R configuration may undergo extensive inversion of configuration to their antipode. The key molecular basis for this mechanism invokes the stereoselective formation of the coenzyme A (CoA) thioester of the 2-arylpropionic acid by long-chain acyl-CoA synthetases (ACSs). In this report, rat recombinant ACS1 and ACS2 enzymes, constitutively highly expressed in adult rat liver and brain, respectively, have been overproduced in Escherichia coli strains and purified to homogeneity to investigate the involvement of these enzymes in the thioesterification of fenoprofen and ibuprofen. Recombinant ACS1 efficiently catalyzed both nonsteroidal anti-inflammatory drugs with Michaelis-Menten parameters of K(M) = 1686 +/- 93 microM, V(max) = 353 +/- 45 nmol/min/mg protein for (-)R-ibuprofen and K(M) = 103 +/- 12 microM, V(max) = 267 +/- 10 nmol/min/mg protein for (-)R-fenoprofen, and exhibited a marked stereoselectivity in favor of the (-)R-enantiomer. Recombinant ACS2, a closely related sequence with ACS1, exhibited a lower enzymatic efficacy from 7- to 130-fold for (-)R-ibuprofen and (-)R-fenoprofen, respectively. On the basis of these findings and considering the level of tissue expression of the different long-chain ACSs, ACS1 appears to be the major enzyme involved in the first step of the chiral inversion of 2-arylpropionic acids. Nevertheless, the participation of other ACS isoforms of minor quantitative importance could not be excluded in the thioesterification of xenobiotics.[1]

References

 
WikiGenes - Universities