The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The aglycone specificity-determining sites are different in 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (Maize beta -glucosidase) and dhurrinase (Sorghum beta -glucosidase).

The maize beta-glucosidase isozyme Glu1 hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOAGlc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-on e), whereas the sorghum beta-glucosidase isozyme Dhr1 hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucose). To study the mechanism of substrate specificity further, eight chimeric beta-glucosidases were constructed by replacing peptide sequences within the C-terminal region of Glu1 with the homologous peptide sequences of Dhr1 or vice versa, where the two enzymes differ by 4 to 22 amino acid substitutions, depending on the length of the swapped regions. Five Glu1/Dhr1 chimeras hydrolyzed substrates that are hydrolyzed by both parental enzymes, including dhurrin, which is not hydrolyzed by Glu1. In contrast, three Dhr1/Glu1 chimeras hydrolyzed only dhurrin but with lower catalytic efficiency than Dhr1. Additional domain-swapping within the C-terminal domain of Glu1 showed that replacing the peptide (466)FAGFTERY(473) of Glu1 with the homologous peptide (462)SSGYTERF(469) of Dhr1 or replacing the peptide (481)NNNCTRYMKE(490) in Glu1 with the homologous peptide (477)ENGCERTMKR(486) of Dhr1 was sufficient to confer to Glu1 the ability to hydrolyze dhurrin. Data from various reciprocal chimeras, sequence comparisons, and homology modeling suggest that the Dhr1-specific Ser-462-Ser-463 and Phe-469 play a key role in dhurrin hydrolysis. Similar data suggest that DIMBOAGlc hydrolysis determinants are not located within the extreme 47-amino acid-long C-terminal domain of Glu1.[1]


WikiGenes - Universities