The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Isolation and molecular characterisation of the gene encoding the cytoplasmic ribosomal protein S28 in Prunus persica [L.]] Batsch.

RT-PCR was performed on peach (Prunus persica [L.] Batsch) RNA to isolate cDNAs corresponding to transcripts which are differentially expressed in leaves borne on basal and apical shoots. A gene was identified which was more highly expressed in the leaves of basal shoots, and codes for the cytoplasmic protein S28 present in the small ribosomal subunit. The 5' leader regions of RPS28 mRNAs were found to harbour 8-11 pyrimidine tracts, which suggested similarities to regulatory stretches that control the translation of mRNAs for ribosomal proteins in animals. The peach S28 is encoded by two intron-containing genes, which are both transcribed in mitotically active tissues such as developing leaves and roots. In situ hybridisation to shoot vegetative apices and the measurement of nucleus/nucleolus ratios indicated that RPS28 expression was confined to areas undergoing active cell division. The mature RPS28 mRNA was detected as a single species in actively dividing tissues such as apical tips, developing leaves, vegetative buds, stamens, developing fruits and roots. In contrast, accumulation of a precursor RNA, in the presence of the mature product, was found in fully expanded leaves and subtending stems, while only the precursor species was detected in several late-stage tissues. This phenomenon suggested that expression of the mature RNA is controlled at the level of splicing and turnover of the precursor RNA. This is similar to the mode of regulation of ribosomal protein genes in animals.[1]


  1. Isolation and molecular characterisation of the gene encoding the cytoplasmic ribosomal protein S28 in Prunus persica [L.]] Batsch. Giannino, D., Frugis, G., Ticconi, C., Florio, S., Mele, G., Santini, L., Cozza, R., Bitonti, M.B., Innocenti, A., Mariotti, D. Mol. Gen. Genet. (2000) [Pubmed]
WikiGenes - Universities