The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Prunus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Prunus

 

High impact information on Prunus

  • Recently, an S haplotype-specific F-box (SFB) gene has been proposed as a candidate for the pollen-S specificity gene of RNase-mediated gametophytic self-incompatibility in Prunus (Rosaceae) [5].
  • Interestingly, LuHNL like ADH and Prunus serotina (PsHNL) possesses an ADP-binding betaalphabeta unit motif, pointing to the possibility that the non-flavoprotein PsHNL and the flavoprotein LuHNL have developed from two independent lines of evolution of a common ancestor with an ADP-binding betaalphabeta unit [6].
  • QRT3 encodes a protein that is approximately 30% similar to an endopolygalacturonase from peach (Prunus persica) [7].
  • To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol [8].
  • In black cherry (Prunus serotina Ehrh.) seed homogenates, (R)-amygdalin is degraded to HCN, benzaldehyde, and glucose by the sequential action of amygdalin hydrolase (AH), prunasin hydrolase (PH), and mandelonitrile lyase [9].
 

Chemical compound and disease context of Prunus

 

Biological context of Prunus

 

Associations of Prunus with chemical compounds

  • The major allergen of peach (Prunus persica) is a lipid transfer protein [16].
  • In black cherry (Prunus serotina Ehrh.) macerates, the cyanogenic diglucoside (R)-amygdalin undergoes stepwise degradation to HCN catalyzed by amygdalin hydrolase (AH), prunasin hydrolase, and (R)-(+)-mandelonitrile lyase (MDL) [17].
  • A 2.2 kb transcript accumulated in ethylene activated abscission zones of leaves and fruits, and ppEG1 (Prunus persica endoglucanase 1) the gene coding for pCel 10, was isolated and characterized [18].
  • The deduced protein sequence of GhGLP1 is similar to Prunus persica auxin-binding proteins, a barley ADP-glucose pyrophosphatase/phosphodiesterase and two different classes of hydrogen peroxide-producing enzymes: wheat germin oxalate oxidase and moss extracellular Mn-superoxide dismutase [19].
  • The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid [20].
 

Gene context of Prunus

  • Two distinct partial cDNAs, PRF1 and PRF3, similar in sequence to previously described polygalacturonases, were amplified from ripe peach (Prunus persica L. Batsch cv Flavorcrest) fruit cDNA by the polymerase chain reaction [21].
  • In contrast, RcOMT2, which shows 94% similarity with caffeic acid O-methyltransferase (COMT) of Prunus amygdalus, was expressed in all tissues tested and had the highest activity with caffeic acid, a typical substrate for COMT [22].
  • The sequence of an alpha-tubulin from Prunus amygdalus has been obtained by cDNA cloning [23].
  • The cDNA, designated Pa-RRM-GRP1 (Prunus avium RNA recognition motif glycine-rich protein 1), contains a single N-terminal RNA recognition motif (RRM) and single C-terminal glycine-rich domain [24].
  • To identify which processes in peach, Prunus persica [L.] Batsch., are associated with changes in ethylene perception, we cloned and characterized a peach homologue of the gene encoding the ethylene receptor, ETR1 [25].
 

Analytical, diagnostic and therapeutic context of Prunus

References

  1. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Bellés, J.M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., Conejero, V. Planta (2006) [Pubmed]
  2. Improvement of hyperglycemia and hyperlipemia in streptozotocin-diabetic rats by a methanolic extract of Prunus davidiana stems and its main component, prunin. Choi, J.S., Yokozawa, T., Oura, H. Planta Med. (1991) [Pubmed]
  3. Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus x P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Song, G.Q., Sink, K.C. Plant Cell Rep. (2006) [Pubmed]
  4. Studies on herbal aphrodisiacs used in Arab system of medicine. Qureshi, S., Shah, A.H., Tariq, M., Ageel, A.M. Am. J. Chin. Med. (1989) [Pubmed]
  5. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Sonneveld, T., Tobutt, K.R., Vaughan, S.P., Robbins, T.P. Plant Cell (2005) [Pubmed]
  6. Molecular cloning of acetone cyanohydrin lyase from flax (Linum usitatissimum). Definition of a novel class of hydroxynitrile lyases. Trummler, K., Wajant, H. J. Biol. Chem. (1997) [Pubmed]
  7. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Rhee, S.Y., Osborne, E., Poindexter, P.D., Somerville, C.R. Plant Physiol. (2003) [Pubmed]
  8. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Gao, Z., Maurousset, L., Lemoine, R., Yoo, S.D., van Nocker, S., Loescher, W. Plant Physiol. (2003) [Pubmed]
  9. Investigation of the microheterogeneity and aglycone specificity-conferring residues of black cherry prunasin hydrolases. Zhou, J., Hartmann, S., Shepherd, B.K., Poulton, J.E. Plant Physiol. (2002) [Pubmed]
  10. Novel structural difference between nopaline- and octopine-type trbJ genes: construction of genetic and physical map and sequencing of trb/traI and rep gene clusters of a new Ti plasmid pTi-SAKURA. Suzuki, K., Ohta, N., Hattori, Y., Uraji, M., Kato, A., Yoshida, K. Biochim. Biophys. Acta (1998) [Pubmed]
  11. Isolation and characterization of multiple forms of prunasin hydrolase from black cherry (Prunus serotina Ehrh.) seeds. Kuroki, G.W., Poulton, J.E. Arch. Biochem. Biophys. (1987) [Pubmed]
  12. The RNase PD2 gene of almond (Prunus dulcis) represents an evolutionarily distinct class of S-like RNase genes. Ma, R.C., Oliveira, M.M. Mol. Gen. Genet. (2000) [Pubmed]
  13. Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). Ruperti, B., Cattivelli, L., Pagni, S., Ramina, A. J. Exp. Bot. (2002) [Pubmed]
  14. Complete amino acid sequence determination of the major allergen of peach (Prunus persica) Pru p 1. Pastorello, E.A., Ortolani, C., Baroglio, C., Pravettoni, V., Ispano, M., Giuffrida, M.G., Fortunato, D., Farioli, L., Monza, M., Napolitano, L., Sacco, M., Scibola, E., Conti, A. Biol. Chem. (1999) [Pubmed]
  15. Developmental regulation of peach ACC oxidase promoter--GUS fusions in transgenic tomato fruits. Moon, H., Callahan, A.M. J. Exp. Bot. (2004) [Pubmed]
  16. The major allergen of peach (Prunus persica) is a lipid transfer protein. Pastorello, E.A., Farioli, L., Pravettoni, V., Ortolani, C., Ispano, M., Monza, M., Baroglio, C., Scibola, E., Ansaloni, R., Incorvaia, C., Conti, A. J. Allergy Clin. Immunol. (1999) [Pubmed]
  17. Temporal and spatial expression of amygdalin hydrolase and (R)-(+)-mandelonitrile lyase in black cherry seeds. Zheng, L., Poulton, J.E. Plant Physiol. (1995) [Pubmed]
  18. Characterization of ppEG1, a member of a multigene family which encodes endo-beta-1,4-glucanase in peach. Trainotti, L., Spolaore, S., Ferrarese, L., Casadoro, G. Plant Mol. Biol. (1997) [Pubmed]
  19. Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Kim, H.J., Triplett, B.A. Planta (2004) [Pubmed]
  20. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Dreveny, I., Kratky, C., Gruber, K. Protein Sci. (2002) [Pubmed]
  21. Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Lester, D.R., Speirs, J., Orr, G., Brady, C.J. Plant Physiol. (1994) [Pubmed]
  22. Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Wu, S., Watanabe, N., Mita, S., Ueda, Y., Shibuya, M., Ebizuka, Y. J. Biosci. Bioeng. (2003) [Pubmed]
  23. A highly conserved alpha-tubulin sequence from Prunus amygdalus. Stöcker, M., Garcia-Mas, J., Arús, P., Messeguer, R., Puigdomènech, P. Plant Mol. Biol. (1993) [Pubmed]
  24. A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. Stephen, J.R., Dent, K.C., Finch-Savage, W.E. Gene (2003) [Pubmed]
  25. Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Bassett, C.L., Artlip, T.S., Callahan, A.M. Planta (2002) [Pubmed]
  26. Molecular cloning and biochemical characterization of a lipoxygenase in almond (Prunus dulcis) seed. Mita, G., Gallo, A., Greco, V., Zasiura, C., Casey, R., Zacheo, G., Santino, A. Eur. J. Biochem. (2001) [Pubmed]
  27. Isolation and characterization of a 60 kDa 2,4-D-binding protein from the shoot apices of peach trees (Prunus persica L.); it is a homologue of protein disulfide isomerase. Sugaya, S., Ohmiya, A., Kikuchi, M., Hayashi, T. Plant Cell Physiol. (2000) [Pubmed]
  28. Authenticity assessment of gamma- and delta-decalactone from prunus fruits by gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (GC-C/P-IRMS). Tamura, H., Appel, M., Richling, E., Schreier, P. J. Agric. Food Chem. (2005) [Pubmed]
  29. Purification and properties of an aminopeptidase from seeds of Japanese apricot. Ninomiya, K., Tanaka, S., Kawata, S., Makisumi, S. J. Biochem. (1981) [Pubmed]
 
WikiGenes - Universities