The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxidation of encapsulated oil in tailor-made cellular solid.

A cellular alginate solid containing oil was prepared by freeze-drying. The oil was incorporated in the matrix by emulsification in the pre-gel state. The alginate-oil gels were immersed in 60 degrees Brix sucrose solution for various periods, before freeze-drying. The extent of the collapse expressing the reduction in sample volume was affected by immersion duration and freeze-drying conditions. Sucrose diffusion during immersion followed an exponential pattern. Effective diffusivity calculated using nonlinear regression gave a value of 3.64 x 10(-)(10) m(2)/s. The effect of relative humidity on water content calculated on a dry basis excluding sucrose showed a significant increase in water content at 75% RH. Image analysis was utilized to quantify the area of the encapsulated oil droplets. The area of the droplets was divided into four subregions defined as (0.02-0.1) x 10(-)(12), (0. 1-1.0) x 10(-)(12), (1-10) x 10(-)(12), and (10-100) x 10(-)(12) m(2). A distribution resembling a Gaussian bell distribution with a maximum of 54% for the (1-10) x 10(-)(12) m(2) area range was found. The number of oil droplets was almost constant for the first three area regions, and then decreased markedly. Oxidation index was not effected by porosity at 0 and 22% RH. A 75% RH and porosity above a critical value of ca. 0.45 was found to increase oxidation significantly. Samples immersed for less than 5.5 h in sucrose solution were mechanically stronger after equilibration at 0 and 22% RH when compared to their counterpart equilibrated at 75% RH. Immersion for more than 24 h resulted in similar mechanical strength irrespective of the RH.[1]

References

  1. Oxidation of encapsulated oil in tailor-made cellular solid. Rassis, D., Nussinovitch, A., Saguy, I.S. J. Agric. Food Chem. (2000) [Pubmed]
 
WikiGenes - Universities