Radiation-induced tissue abnormalities in fetal brain are related to apoptosis immediately after irradiation.
PURPOSE: To investigate the relation between the incidence of radiation-induced tissue abnormalities in fetal brain and the extent of p53-dependent apoptosis. MATERIALS AND METHODS: Pregnant mice with wild-type p53(+/+), heterozygous p53(+/-) and homozygous mutant p53(-/-) fetuses received whole-body X-irradiation on day 13 of gestation. The extent of apoptosis 6 hr after irradiation and the incidence of tissue abnormalities 3 days after irradiation in the brain were evaluated by histological examination of brain mantle. RESULTS: The percentage of apoptotic cells increased linearly with dose in p53(+/+) and p53(+/-) fetuses, but no increase was found in p53(-/-). Approximately twice the dose was necessary in p53(+/-) fetuses to induce an apoptotic response to the extent observed in p53(+/+). Fetuses with brain-tissue abnormalities, such as a destroyed ventricular lining and rosettes with a central hollow appeared at a dose of 1.5 and 3.0 Gy, and the incidence was markedly increased following a dose of 2.25 and 3.75Gy in p53(+/+) and p53(+/-) mice, respectively, but no fetus with tissue abnormalities appeared in p53(-/-) at up to 3.75 Gy. Approximately twice the dose was necessary in p53(+/-) fetuses to induce brain-tissue abnormalities to the extent seen in p53(+/+) mice. CONCLUSION: The extent of apoptosis 6 hr after irradiation and the incidence and severity of brain-tissue abnormalities 3 days after irradiation corresponded well, suggesting that radiation-induced tissue abnormalities, such as destroyed ventricular lining, deranged glial fibre and appearance of rosettes in fetal brain were closely related to apoptosis seen 6 hr after irradiation.[1]References
- Radiation-induced tissue abnormalities in fetal brain are related to apoptosis immediately after irradiation. Kubota, Y., Takahashi, S., Sun, X.Z., Sato, H., Aizawa, S., Yoshida, K. Int. J. Radiat. Biol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg