The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A targeted partial invalidation of the insulin-like growth factor I receptor gene in mice causes a postnatal growth deficit.

The insulin-like growth factor (IGF) system is a major regulator of somatic growth in vertebrates. Both ligands (IGF-I and IGF-II) signal via the same IGF receptor (IGF-IR). Classical IGF-IR invalidation is lethal at birth, so that conditional models are needed to study the postnatal role of this receptor. To establish a genetically inducible invalidation of IGF-IR, we targeted the IGF-IR gene using a construct that introduced a neomycin resistance cassette into intron 2, leaving the rest of the gene intact. This neomycin resistance cassette interfered with the processing of the primary transcript, resulting in there being 12% fewer IGF-binding sites at the cell surface in heterozygous mice and 41% fewer in homozygous mice. Hetero- and homozygous offspring grew more slowly than their wild-type littermates. This difference was noticeable from 4 weeks after birth and was significant from 5 weeks after birth in males. In females, the effect on postnatal growth of insertion of the neo cassette was not significant. In males, IGF-I levels increased moderately (+26%) but significantly, indicating effective feedback regulation of the IGF system. IGF-binding protein-4 ( IGFBP-4) levels, estimated by Western ligand blotting, were low in homozygotes (-38%), whereas IGFBP-1, -2, and -3 levels were unaffected. In females, IGF-I and IGFBP-1, -2, -3, and -4 levels did not differ significantly among heterozygous, homozygous, and wild-type animals. We investigated the molecular mechanism involved and characterized two RNA-splicing events that could account for the decrease in IGF-IR. The phenotype of these mice developed exclusively postnatally, and body proportions were maintained. IGF-IRneo mice constitute a new model for human postnatal growth deficiency.[1]


  1. A targeted partial invalidation of the insulin-like growth factor I receptor gene in mice causes a postnatal growth deficit. Holzenberger, M., Leneuve, P., Hamard, G., Ducos, B., Perin, L., Binoux, M., Le Bouc, Y. Endocrinology (2000) [Pubmed]
WikiGenes - Universities