The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines.

Steady-state and single-turnover kinetics for the oxidation of the N-substituted phenothiazines (PTs) and phenoxazines (POs) catalyzed by fungal Coprinus cinereus peroxidase and Polyporus pinsitus laccase were investigated at pH 4-10. In the case of peroxidase, an apparent bimolecular rate constant (expressed as k(cat)/K(m)) varied from 1 x10(7)M(-1)s(-1) to 2.6 x 108 M(-1)s(-1) at pH 7. 0. The constants for PO oxidation were higher in comparison to PT. pH dependence revealed two or three ionizable groups with pKa values of 4.9-5.7 and 7.7-9.7 that significantly affected the activity of peroxidase. Single-turnover experiments showed that the limiting step of PT oxidation was reduction of compound II and second-order rate constants were obtained which were consistent with the constants at steady-state conditions. Laccase-catalyzed PT and PO oxidation rates were lower; apparent bimolecular rate constants varied from 1.8x 10(5) M(-1) s(-1) to 2.0 x 10(7) M(-1) s(-1) at pH 5. 3. PO constants were higher in comparison to PT, as was the case with peroxidase. The dependence of the apparent bimolecular constants of compound II or copper type 1 reduction, in the case of peroxidase or laccase, respectively, was analyzed in the framework of the Marcus outer-sphere electron-transfer theory. Peroxidase-catalyzed reactions with PT, as well as PO, fitted the same hyperbolic dependence with a maximal oxidation rate of 1.6 x 10(8)M(-1)s(-1) and a reorganization energy of 0.30 eV. The respective parameters for laccase were 5.0 x 10(7) M(-1) s(-1) and 0.29 eV.[1]

References

 
WikiGenes - Universities