The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Coprinus


High impact information on Coprinus

  • This inference is supported by experimental results on the Coprinus macrorhizus peroxidase (52), manganese peroxidase (51), lignin peroxidase (50) and, less definitively, lactoperoxidase (90) [2].
  • We examined Spo11 function in a multicellular fungus, Coprinus cinereus [3].
  • The enzyme is heavily glycosylated and consists of three cupredoxin-like domains, similar to those found in the Cu-depleted basidiomycete laccase from Coprinus cinereus [4].
  • We examined the inheritance of 5-methylcytosine residues at a centromere-linked locus in the basidiomycete Coprinus cinereus [5].
  • Two forms of DNA polymerase have been studied in the basidiomycete Coprinus [6].

Biological context of Coprinus


Anatomical context of Coprinus


Associations of Coprinus with chemical compounds

  • We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield [13].
  • CONCLUSIONS: rCop c 1, the first cloned allergen from the genus Coprinus, fulfills all the criteria required to be classified as a clinically relevant allergen [14].
  • Resonance Raman (RR) spectra for the resting state ferric and the reduced ferrous forms of recombinant Coprinus cinereus peroxidase (CIP), obtained with different excitation wavelengths and in polarized light, are reported [15].
  • The peroxidase from Coprinus macrorhizus is inactivated by phenylhydrazine or sodium azide in the presence of H2O2 [16].
  • Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Coprinus peroxidase are consistent with coordination of a proximal histidine ligand [17].

Gene context of Coprinus

  • Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus [18].
  • We prepared cDNAs and recombinant proteins of the full-length, N-terminal, and the C-terminal domains of LIM15/DMC1 (CoLIM15) and RAD51 (CoRAD51) from the basidiomycete Coprinus cinereus [19].
  • A basidiomycete, Coprinus cinereus, which has many advantages for the study of meiosis, was recently reported to have a homolog of one of these, RAD51 [20].
  • Based on this finding, we screened for a meiosis-specific homolog of recA, equivalent to Lilium LIM15 or Saccharomyces DMC1, in C. cinereus, and isolated a clone containing a 1.2-kb DNA fragment from a cDNA library constructed with Coprinus poly(A)+ RNA isolated from cells undergoing meiosis [20].
  • The basidiomycete Coprinopsis cinerea (Coprinus cinereus) expresses two fruiting body-specific isolectins (CGL1 and CGL2) that belong to the family of galectins [21].

Analytical, diagnostic and therapeutic context of Coprinus


  1. A pulmonary infection caused by Coprinus cinereus (Hormographiella aspergillata) diagnosed after a neutropenic episode. Surmont, I., Van Aelst, F., Verbanck, J., De Hoog, G.S. Med. Mycol. (2002) [Pubmed]
  2. Catalytic sites of hemoprotein peroxidases. Ortiz de Montellano, P.R. Annu. Rev. Pharmacol. Toxicol. (1992) [Pubmed]
  3. Multiple roles of Spo11 in meiotic chromosome behavior. Celerin, M., Merino, S.T., Stone, J.E., Menzie, A.M., Zolan, M.E. EMBO J. (2000) [Pubmed]
  4. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., Rouvinen, J. Nat. Struct. Biol. (2002) [Pubmed]
  5. Inheritance of DNA methylation in Coprinus cinereus. Zolan, M.E., Pukkila, P.J. Mol. Cell. Biol. (1986) [Pubmed]
  6. Meiosis in Coprinus: characterization and activities of two forms of DNA polymerase during meiotic stages. Sakaguchi, K., Lu, B.C. Mol. Cell. Biol. (1982) [Pubmed]
  7. Meiosis in Coprinus VII. The prekaryogamy S-phase and the postkaryogamy DNA replication in C. lagopus. Lu, B.C., Jeng, D.Y. J. Cell. Sci. (1975) [Pubmed]
  8. Molecular analysis of the Coprinus cinereus mating type A factor demonstrates an unexpectedly complex structure. May, G., Le Chevanton, L., Pukkila, P.J. Genetics (1991) [Pubmed]
  9. An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Gerecke, E.E., Zolan, M.E. Genetics (2000) [Pubmed]
  10. The rad9 gene of Coprinus cinereus encodes a proline-rich protein required for meiotic chromosome condensation and synapsis. Seitz, L.C., Tang, K., Cummings, W.J., Zolan, M.E. Genetics (1996) [Pubmed]
  11. Biochemical analysis of the role of cytoplasmic ribosomes of Coprinus cinereus in cycloheximide resistance. Traynor, J.D., Sardharwalla, I., North, J. J. Gen. Microbiol. (1986) [Pubmed]
  12. Structure and composition of the alkali-insoluble cell wall fraction of Coprinus macrorhizus var. microsporus. Bottom, C.B., Siehr, D.J. Can. J. Biochem. (1980) [Pubmed]
  13. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase. Tuynman, A., Spelberg, J.L., Kooter, I.M., Schoemaker, H.E., Wever, R. J. Biol. Chem. (2000) [Pubmed]
  14. IgE-binding proliferative responses and skin test reactivity to Cop c 1, the first recombinant allergen from the basidiomycete Coprinus comatus. Brander, K.A., Borbély, P., Crameri, R., Pichler, W.J., Helbling, A. J. Allergy Clin. Immunol. (1999) [Pubmed]
  15. Resonance Raman study of the active site of Coprinus cinereus peroxidase. Smulevich, G., Feis, A., Focardi, C., Tams, J., Welinder, K.G. Biochemistry (1994) [Pubmed]
  16. Substrate oxidation by the heme edge of fungal peroxidases. Reaction of Coprinus macrorhizus peroxidase with hydrazines and sodium azide. DePillis, G.D., Ortiz de Montellano, P.R. Biochemistry (1989) [Pubmed]
  17. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase. Lukat, G.S., Rodgers, K.R., Jabro, M.N., Goff, H.M. Biochemistry (1989) [Pubmed]
  18. Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus. Skrzynia, C., Binninger, D.M., Alspaugh, J.A., Pukkila, P.J. Gene (1989) [Pubmed]
  19. Characterization of interaction of C- and N-terminal domains in LIM15/DMC1 and RAD51 from a basidiomycetes, Coprinus cinereus. Nara, T., Yamamoto, T., Sakaguchi, K. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  20. Isolation of a LIM15/DMC1 homolog from the basidiomycete Coprinus cinereus and its expression in relation to meiotic chromosome pairing. Nara, T., Saka, T., Sawado, T., Takase, H., Ito, Y., Hotta, Y., Sakaguchi, K. Mol. Gen. Genet. (1999) [Pubmed]
  21. Ligand interactions of the Coprinopsis cinerea galectins. Walser, P.J., Kües, U., Aebi, M., Künzler, M. Fungal Genet. Biol. (2005) [Pubmed]
  22. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Ducros, V., Brzozowski, A.M., Wilson, K.S., Brown, S.H., Ostergaard, P., Schneider, P., Yaver, D.S., Pedersen, A.H., Davies, G.J. Nat. Struct. Biol. (1998) [Pubmed]
  23. A meiotic DNA polymerase from a mushroom, Agaricus bisporus. Takami, K., Matsuda, S., Sono, A., Sakaguchi, K. Biochem. J. (1994) [Pubmed]
WikiGenes - Universities