The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer's amyloid-beta protein precursor and cathepsin D in human cells.

Maintenance of the appropriate pH in the intracellular vacuolar compartments is essential for normal cell function. Here, we report that CLN3 protein, which is associated with the juvenile form of neuronal ceroid lipofuscinosis (JNCL), participates in lysosomal pH homeostasis in human cells. We show that CLN3 protein increases lysosomal pH in cultured human embryonal kidney cells, whereas inhibition of CLN3 protein synthesis by antisense approach acidifies lysosomal compartments. These changes in lysosomal pH are sufficient to exert a significant biological effect and modify intracellular processing of amyloid-beta protein precursor and cathepsin D, model proteins whose metabolism is influenced by the pH of acidic organelles. Mutant CLN3 protein (R334C) that is associated with the classical JNCL phenotype was devoid of biological activities of wild-type CLN3 protein. These data suggest that the pathogenesis of juvenile neuronal ceroid lipofuscinosis is associated with altered acidification of lysosomal compartments. Furthermore, our study indicates that CLN3 protein affects metabolism of proteins essential for cell functions, such as amyloid-beta protein precursor, implicated in Alzheimer's disease pathogenesis.[1]

References

  1. CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer's amyloid-beta protein precursor and cathepsin D in human cells. Golabek, A.A., Kida, E., Walus, M., Kaczmarski, W., Michalewski, M., Wisniewski, K.E. Mol. Genet. Metab. (2000) [Pubmed]
 
WikiGenes - Universities