The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Homeostasis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Homeostasis

 

Psychiatry related information on Homeostasis

 

High impact information on Homeostasis

 

Chemical compound and disease context of Homeostasis

 

Biological context of Homeostasis

 

Anatomical context of Homeostasis

 

Associations of Homeostasis with chemical compounds

  • Due to its presumed role in regulating cellular cholesterol homeostasis, and in various pathophysiological conditions, acyl-coenzyme A:cholesterol acyltransferase (ACAT) has attracted much attention [30].
  • In addition, a coherent formulation of the physiological changes that lead from the defect in cellular insulin action to the loss in glucose homeostasis is presented [31].
  • The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney [32].
  • In the periphery, dopamine receptors are present more prominently in kidney, vasculature, and pituitary, where they affect mainly sodium homeostasis, vascular tone, and hormone secretion [33].
  • These include changes in the taste perception of calcium, signals related to blood calcium concentrations, and actions of the primary hormones of calcium homeostasis: parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D [34].
 

Gene context of Homeostasis

  • The powerful effects of POMC peptides and probably CRH on the skin pigmentary, immune, and adnexal systems are consistent with stress-neutralizing activity addressed at maintaining skin integrity to restrict disruptions of internal homeostasis [35].
  • Thus, Irs-2 integrates the effects of insulin in peripheral target tissues with Igf-1 in pancreatic beta-cells to maintain glucose homeostasis [23].
  • Genetic and pharmacological studies have defined a role for the melanocortin-4 receptor (Mc4r) in the regulation of energy homeostasis [36].
  • Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7 [37].
  • Mice lacking the calcium-sensing receptor (Casr) were created to examine the receptor's role in calcium homeostasis and to elucidate the mechanism by which inherited human Casr gene defects cause diseases [38].
 

Analytical, diagnostic and therapeutic context of Homeostasis

References

  1. Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene. Aiba, H. Cell (1983) [Pubmed]
  2. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Lei, K.J., Chen, H., Pan, C.J., Ward, J.M., Mosinger, B., Lee, E.J., Westphal, H., Mansfield, B.C., Chou, J.Y. Nat. Genet. (1996) [Pubmed]
  3. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Sleeman, M.W., Wortley, K.E., Lai, K.M., Gowen, L.C., Kintner, J., Kline, W.O., Garcia, K., Stitt, T.N., Yancopoulos, G.D., Wiegand, S.J., Glass, D.J. Nat. Med. (2005) [Pubmed]
  4. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Inoue, H., Ogawa, W., Ozaki, M., Haga, S., Matsumoto, M., Furukawa, K., Hashimoto, N., Kido, Y., Mori, T., Sakaue, H., Teshigawara, K., Jin, S., Iguchi, H., Hiramatsu, R., LeRoith, D., Takeda, K., Akira, S., Kasuga, M. Nat. Med. (2004) [Pubmed]
  5. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Holz, G.G., Kühtreiber, W.M., Habener, J.F. Nature (1993) [Pubmed]
  6. CNS synaptogenesis promoted by glia-derived cholesterol. Mauch, D.H., Nägler, K., Schumacher, S., Göritz, C., Müller, E.C., Otto, A., Pfrieger, F.W. Science (2001) [Pubmed]
  7. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Li, Y., Gao, X.B., Sakurai, T., van den Pol, A.N. Neuron (2002) [Pubmed]
  8. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Marsh, D.J., Weingarth, D.T., Novi, D.E., Chen, H.Y., Trumbauer, M.E., Chen, A.S., Guan, X.M., Jiang, M.M., Feng, Y., Camacho, R.E., Shen, Z., Frazier, E.G., Yu, H., Metzger, J.M., Kuca, S.J., Shearman, L.P., Gopal-Truter, S., MacNeil, D.J., Strack, A.M., MacIntyre, D.E., Van der Ploeg, L.H., Qian, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice. Young, J.I., Otero, V., Cerdán, M.G., Falzone, T.L., Chan, E.C., Low, M.J., Rubinstein, M. J. Neurosci. (1998) [Pubmed]
  10. Neuronal expression of a functional receptor for the C5a complement activation fragment. O'Barr, S.A., Caguioa, J., Gruol, D., Perkins, G., Ember, J.A., Hugli, T., Cooper, N.R. J. Immunol. (2001) [Pubmed]
  11. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Ma, A., Koka, R., Burkett, P. Annu. Rev. Immunol. (2006) [Pubmed]
  12. The B7 family revisited. Greenwald, R.J., Freeman, G.J., Sharpe, A.H. Annu. Rev. Immunol. (2005) [Pubmed]
  13. The role of the Ikaros gene in lymphocyte development and homeostasis. Georgopoulos, K., Winandy, S., Avitahl, N. Annu. Rev. Immunol. (1997) [Pubmed]
  14. TGF-beta signal transduction. Massagué, J. Annu. Rev. Biochem. (1998) [Pubmed]
  15. Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Sontheimer, H. Trends Neurosci. (2003) [Pubmed]
  16. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. Adams, J.S., Gacad, M.A. J. Exp. Med. (1985) [Pubmed]
  17. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. Brezis, M., Heyman, S.N., Dinour, D., Epstein, F.H., Rosen, S. J. Clin. Invest. (1991) [Pubmed]
  18. Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. Lau, T., Owen, W., Yu, Y.M., Noviski, N., Lyons, J., Zurakowski, D., Tsay, R., Ajami, A., Young, V.R., Castillo, L. J. Clin. Invest. (2000) [Pubmed]
  19. Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype. Takahashi, K., Suwa, H., Ishikawa, T., Kotani, H. J. Clin. Invest. (2002) [Pubmed]
  20. The stress response in fish. Wendelaar Bonga, S.E. Physiol. Rev. (1997) [Pubmed]
  21. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Coste, S.C., Kesterson, R.A., Heldwein, K.A., Stevens, S.L., Heard, A.D., Hollis, J.H., Murray, S.E., Hill, J.K., Pantely, G.A., Hohimer, A.R., Hatton, D.C., Phillips, T.J., Finn, D.A., Low, M.J., Rittenberg, M.B., Stenzel, P., Stenzel-Poore, M.P. Nat. Genet. (2000) [Pubmed]
  22. A signal transduction system that responds to extracellular iron. Wösten, M.M., Kox, L.F., Chamnongpol, S., Soncini, F.C., Groisman, E.A. Cell (2000) [Pubmed]
  23. Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Withers, D.J., Burks, D.J., Towery, H.H., Altamuro, S.L., Flint, C.L., White, M.F. Nat. Genet. (1999) [Pubmed]
  24. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., Kaufman, R.J. Cell (2001) [Pubmed]
  25. Neuroendocrine control of body fluid metabolism. Antunes-Rodrigues, J., de Castro, M., Elias, L.L., Valença, M.M., McCann, S.M. Physiol. Rev. (2004) [Pubmed]
  26. Physiology of nitric oxide in skeletal muscle. Stamler, J.S., Meissner, G. Physiol. Rev. (2001) [Pubmed]
  27. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Blake, D.J., Weir, A., Newey, S.E., Davies, K.E. Physiol. Rev. (2002) [Pubmed]
  28. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Grupe, A., Hultgren, B., Ryan, A., Ma, Y.H., Bauer, M., Stewart, T.A. Cell (1995) [Pubmed]
  29. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Carroll, J.M., Romero, M.R., Watt, F.M. Cell (1995) [Pubmed]
  30. Acyl-coenzyme A:cholesterol acyltransferase. Chang, T.Y., Chang, C.C., Cheng, D. Annu. Rev. Biochem. (1997) [Pubmed]
  31. Pathophysiology of insulin resistance in human disease. Reaven, G.M. Physiol. Rev. (1995) [Pubmed]
  32. Extracellular calcium sensing and extracellular calcium signaling. Brown, E.M., MacLeod, R.J. Physiol. Rev. (2001) [Pubmed]
  33. Dopamine receptors: from structure to function. Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., Caron, M.G. Physiol. Rev. (1998) [Pubmed]
  34. Calcium: taste, intake, and appetite. Tordoff, M.G. Physiol. Rev. (2001) [Pubmed]
  35. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Slominski, A., Wortsman, J., Luger, T., Paus, R., Solomon, S. Physiol. Rev. (2000) [Pubmed]
  36. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Chen, A.S., Marsh, D.J., Trumbauer, M.E., Frazier, E.G., Guan, X.M., Yu, H., Rosenblum, C.I., Vongs, A., Feng, Y., Cao, L., Metzger, J.M., Strack, A.M., Camacho, R.E., Mellin, T.N., Nunes, C.N., Min, W., Fisher, J., Gopal-Truter, S., MacIntyre, D.E., Chen, H.Y., Van der Ploeg, L.H. Nat. Genet. (2000) [Pubmed]
  37. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Schmitz, C., Perraud, A.L., Johnson, C.O., Inabe, K., Smith, M.K., Penner, R., Kurosaki, T., Fleig, A., Scharenberg, A.M. Cell (2003) [Pubmed]
  38. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Ho, C., Conner, D.A., Pollak, M.R., Ladd, D.J., Kifor, O., Warren, H.B., Brown, E.M., Seidman, J.G., Seidman, C.E. Nat. Genet. (1995) [Pubmed]
  39. Artificial pancreas using living beta cells:. effects on glucose homeostasis in diabetic rats. Chick, W.L., Perna, J.J., Lauris, V., Low, D., Galletti, P.M., Panol, G., Whittemore, A.D., Like, A.A., Colton, C.K., Lysaght, M.J. Science (1977) [Pubmed]
  40. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. Diwa, A., Bricker, A.L., Jain, C., Belasco, J.G. Genes Dev. (2000) [Pubmed]
  41. T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. Hao, Z., Hampel, B., Yagita, H., Rajewsky, K. J. Exp. Med. (2004) [Pubmed]
  42. Regulation of glucose homeostasis in humans with denervated livers. Perseghin, G., Regalia, E., Battezzati, A., Vergani, S., Pulvirenti, A., Terruzzi, I., Baratti, D., Bozzetti, F., Mazzaferro, V., Luzi, L. J. Clin. Invest. (1997) [Pubmed]
  43. Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron. Obermüller, N., Kunchaparty, S., Ellison, D.H., Bachmann, S. J. Clin. Invest. (1996) [Pubmed]
 
WikiGenes - Universities