The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of pH on the conformation, interaction with membranes and hemolytic activity of sticholysin II, a pore forming cytolysin from the sea anemone Stichodactyla helianthus.

Sticholysin II (St II) is a pore forming cytolysin obtained from the sea anemone Stichodactyla helianthus. Incubation of diluted St II solutions at different pHs (ranging from 2.0 to 12) slightly changes the secondary structure of the protein. These changes are particularly manifested at high pH. Similarly, the intrinsic fluorescence of the protein indicates a progressive opening of the protein structure when the pH increases from acidic (2.0) to basic (12). These modifications are only partially reversible and do not produce any significant increase in the small capacity of the protein to bind hydrophobic dyes (ANS or Prodan). Experiments carried out with model membranes show a reduced capacity of binding to egg phosphatidyl choline:sphingomyelin (1:1) liposomes both at low (2.3) and high (11.5) pH. Preincubation of the protein in the 2. 5-9.0 pH range does not modify its hemolytic activity, measured in human red blood cells at pH 7. 4. On the other hand, preincubation at pH 11.5 drastically reduces the hemolytic activity of the toxin. This strong reduction takes place without measurable modification of the toxin ability to be adsorbed to the red blood cell surface. This indicates that preincubation at high pH irreversibly reduces the capacity of the toxin to form pores without a significant decrease in its binding capacity. The present results suggest that at pH > or = 10 St II experiences irreversible conformational changes that notably reduce its biological activity. This reduced biological activity is associated with a partial defolding of the protein, which seems to contradict what is expected in terms of a molten globule formalism.[1]

References

  1. Effect of pH on the conformation, interaction with membranes and hemolytic activity of sticholysin II, a pore forming cytolysin from the sea anemone Stichodactyla helianthus. Alvarez, C., Pazos, I.F., Lanio, M.E., Martinez, D., Schreier, S., Casallanovo, F., Campos, A.M., Lissi, E. Toxicon (2001) [Pubmed]
 
WikiGenes - Universities