The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen.

Mice carrying a targeted mutation (r) in Col1a1, encoding a collagenase-resistant form of type I collagen, have altered skeletal remodeling. In hematoxylin and eosin-stained paraffin sections, we detect empty lacunae in osteocytes in calvariae from Col1a1(r/r) mice at age 2 weeks, increasing through age 10-12 months. Empty lacunae appear to result from osteocyte apoptosis, since staining of osteocytes/periosteal osteoblasts with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling is increased in Col1a1(r/r) relative to wild-type bones. Osteocyte perilacunar matrices stained with Ab that recognizes collagenase collagen alpha1(I) chain cleavage ends in wild-type but not Col1a1(r/r) calvariae. Increased calvarial periosteal and tibial/femoral endosteal bone deposition was found in Col1a1(r/r) mice from ages 3-12 months. Calcein labeling of calvarial surfaces was increased in Col1a1(r/r) relative to wild-type mice. Daily injections of synthetic parathyroid hormone for 30 days increased calcein-surface labeling in wild-type but caused no further increase in the already high calcein staining of Col1a1(r/r) bones. Thus, failure of collagenase cleavage of type I collagen in Col1a1(r/r) mice is associated with osteocyte/osteoblast death but increases bone deposition in a manner that mimics the parathyroid hormone-induced bone surface activation seen in wild-type mice.[1]

References

 
WikiGenes - Universities