The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Osteoblasts


Psychiatry related information on Osteoblasts


High impact information on Osteoblasts


Chemical compound and disease context of Osteoblasts


Biological context of Osteoblasts


Anatomical context of Osteoblasts


Associations of Osteoblasts with chemical compounds

  • Osf2/Cbfa1 expression is initiated in the mesenchymal condensations of the developing skeleton, is strictly restricted to cells of the osteoblast lineage thereafter, and is regulated by BMP7 and vitamin D3 [25].
  • Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche [26].
  • Endothelin-1, more commonly known as a potent vasoconstrictor, is a normal ejaculate protein that also stimulates osteoblasts [27].
  • Impaired osteoblast function due to E deficiency, aging, or both also contributes to the slow phase of bone loss [28].
  • Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor [11].

Gene context of Osteoblasts

  • Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation [25].
  • Here we show that Tob, a member of the emerging family of antiproliferative proteins, is a negative regulator of BMP/Smad signaling in osteoblasts [29].
  • We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway [30].
  • This reduction is caused by severe impairment of bone formation, suggesting that NFAT transcription factors also have an important role in the transcriptional program of osteoblasts [31].
  • This increase is caused by excessive osteoblast differentiation, wherein Stat1 function is independent of IFN signaling [32].

Analytical, diagnostic and therapeutic context of Osteoblasts


  1. Sodium fluoride therapy of postmenopausal osteoporosis. Kleerekoper, M., Mendlovic, D.B. Endocr. Rev. (1993) [Pubmed]
  2. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. Jilka, R.L., Weinstein, R.S., Bellido, T., Roberson, P., Parfitt, A.M., Manolagas, S.C. J. Clin. Invest. (1999) [Pubmed]
  3. Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. Thomas, D.M., Johnson, S.A., Sims, N.A., Trivett, M.K., Slavin, J.L., Rubin, B.P., Waring, P., McArthur, G.A., Walkley, C.R., Holloway, A.J., Diyagama, D., Grim, J.E., Clurman, B.E., Bowtell, D.D., Lee, J.S., Gutierrez, G.M., Piscopo, D.M., Carty, S.A., Hinds, P.W. J. Cell Biol. (2004) [Pubmed]
  4. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. Mansukhani, A., Bellosta, P., Sahni, M., Basilico, C. J. Cell Biol. (2000) [Pubmed]
  5. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. Lecanda, F., Warlow, P.M., Sheikh, S., Furlan, F., Steinberg, T.H., Civitelli, R. J. Cell Biol. (2000) [Pubmed]
  6. Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. Misra, M., Miller, K.K., Stewart, V., Hunter, E., Kuo, K., Herzog, D.B., Klibanski, A. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  7. Interleukin-18 regulates both Th1 and Th2 responses. Nakanishi, K., Yoshimoto, T., Tsutsui, H., Okamura, H. Annu. Rev. Immunol. (2001) [Pubmed]
  8. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A., Frenette, P.S. Cell (2006) [Pubmed]
  9. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Yamashita, M., Ying, S.X., Zhang, G.M., Li, C., Cheng, S.Y., Deng, C.X., Zhang, Y.E. Cell (2005) [Pubmed]
  10. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Li, X., Liu, P., Liu, W., Maye, P., Zhang, J., Zhang, Y., Hurley, M., Guo, C., Boskey, A., Sun, L., Harris, S.E., Rowe, D.W., Ke, H.Z., Wu, D. Nat. Genet. (2005) [Pubmed]
  11. Progesterone as a bone-trophic hormone. Prior, J.C. Endocr. Rev. (1990) [Pubmed]
  12. 1,25-dihydroxycholecalciferol and parathormone: effects on isolated osteoclast-like and osteoblast-like cells. Wong, G.L., Luben, R.A., Cohn, D.V. Science (1977) [Pubmed]
  13. Transcriptional induction of prostaglandin G/H synthase-2 by basic fibroblast growth factor. Kawaguchi, H., Pilbeam, C.C., Gronowicz, G., Abreu, C., Fletcher, B.S., Herschman, H.R., Raisz, L.G., Hurley, M.M. J. Clin. Invest. (1995) [Pubmed]
  14. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. Jilka, R.L., Takahashi, K., Munshi, M., Williams, D.C., Roberson, P.K., Manolagas, S.C. J. Clin. Invest. (1998) [Pubmed]
  15. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Stein, B., Yang, M.X. Mol. Cell. Biol. (1995) [Pubmed]
  16. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., Kishimoto, T. Cell (1997) [Pubmed]
  17. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H.C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T.M., Hanauer, A., Karsenty, G. Cell (2004) [Pubmed]
  18. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Kousteni, S., Bellido, T., Plotkin, L.I., O'Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Roberson, P.K., Weinstein, R.S., Jilka, R.L., Manolagas, S.C. Cell (2001) [Pubmed]
  19. The molecular clock mediates leptin-regulated bone formation. Fu, L., Patel, M.S., Bradley, A., Wagner, E.F., Karsenty, G. Cell (2005) [Pubmed]
  20. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., Selby, P.B., Owen, M.J. Cell (1997) [Pubmed]
  21. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Yoshida, C.A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., Satake, M., Takada, K., Komori, T. Nat. Genet. (2002) [Pubmed]
  22. Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. Udagawa, N., Horwood, N.J., Elliott, J., Mackay, A., Owens, J., Okamura, H., Kurimoto, M., Chambers, T.J., Martin, T.J., Gillespie, M.T. J. Exp. Med. (1997) [Pubmed]
  23. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. Kim, N., Takami, M., Rho, J., Josien, R., Choi, Y. J. Exp. Med. (2002) [Pubmed]
  24. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. Sato, N., Takahashi, N., Suda, K., Nakamura, M., Yamaki, M., Ninomiya, T., Kobayashi, Y., Takada, H., Shibata, K., Yamamoto, M., Takeda, K., Akira, S., Noguchi, T., Udagawa, N. J. Exp. Med. (2004) [Pubmed]
  25. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., Karsenty, G. Cell (1997) [Pubmed]
  26. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., Suda, T. Cell (2004) [Pubmed]
  27. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nelson, J.B., Hedican, S.P., George, D.J., Reddi, A.H., Piantadosi, S., Eisenberger, M.A., Simons, J.W. Nat. Med. (1995) [Pubmed]
  28. Sex steroids and the construction and conservation of the adult skeleton. Riggs, B.L., Khosla, S., Melton, L.J. Endocr. Rev. (2002) [Pubmed]
  29. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Yoshida, Y., Tanaka, S., Umemori, H., Minowa, O., Usui, M., Ikematsu, N., Hosoda, E., Imamura, T., Kuno, J., Yamashita, T., Miyazono, K., Noda, M., Noda, T., Yamamoto, T. Cell (2000) [Pubmed]
  30. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Gong, Y., Slee, R.B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A.M., Wang, H., Cundy, T., Glorieux, F.H., Lev, D., Zacharin, M., Oexle, K., Marcelino, J., Suwairi, W., Heeger, S., Sabatakos, G., Apte, S., Adkins, W.N., Allgrove, J., Arslan-Kirchner, M., Batch, J.A., Beighton, P., Black, G.C., Boles, R.G., Boon, L.M., Borrone, C., Brunner, H.G., Carle, G.F., Dallapiccola, B., De Paepe, A., Floege, B., Halfhide, M.L., Hall, B., Hennekam, R.C., Hirose, T., Jans, A., Jüppner, H., Kim, C.A., Keppler-Noreuil, K., Kohlschuetter, A., LaCombe, D., Lambert, M., Lemyre, E., Letteboer, T., Peltonen, L., Ramesar, R.S., Romanengo, M., Somer, H., Steichen-Gersdorf, E., Steinmann, B., Sullivan, B., Superti-Furga, A., Swoboda, W., van den Boogaard, M.J., Van Hul, W., Vikkula, M., Votruba, M., Zabel, B., Garcia, T., Baron, R., Olsen, B.R., Warman, M.L. Cell (2001) [Pubmed]
  31. NFAT and Osterix cooperatively regulate bone formation. Koga, T., Matsui, Y., Asagiri, M., Kodama, T., de Crombrugghe, B., Nakashima, K., Takayanagi, H. Nat. Med. (2005) [Pubmed]
  32. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Kim, S., Koga, T., Isobe, M., Kern, B.E., Yokochi, T., Chin, Y.E., Karsenty, G., Taniguchi, T., Takayanagi, H. Genes Dev. (2003) [Pubmed]
  33. Fetal bovine bone cells synthesize bone-specific matrix proteins. Whitson, S.W., Harrison, W., Dunlap, M.K., Bowers, D.E., Fisher, L.W., Robey, P.G., Termine, J.D. J. Cell Biol. (1984) [Pubmed]
  34. Stem cell factor stimulates chicken osteoclast activity in vitro. van't Hof, R.J., von Lindern, M., Nijweide, P.J., Beug, H. FASEB J. (1997) [Pubmed]
  35. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cao, Y., Zhou, Z., de Crombrugghe, B., Nakashima, K., Guan, H., Duan, X., Jia, S.F., Kleinerman, E.S. Cancer Res. (2005) [Pubmed]
  36. A new bone to pick: osteoblasts and the haematopoietic stem-cell niche. Zhu, J., Emerson, S.G. Bioessays (2004) [Pubmed]
  37. Identification and cloning of a connective tissue growth factor-like cDNA from human osteoblasts encoding a novel regulator of osteoblast functions. Kumar, S., Hand, A.T., Connor, J.R., Dodds, R.A., Ryan, P.J., Trill, J.J., Fisher, S.M., Nuttall, M.E., Lipshutz, D.B., Zou, C., Hwang, S.M., Votta, B.J., James, I.E., Rieman, D.J., Gowen, M., Lee, J.C. J. Biol. Chem. (1999) [Pubmed]
WikiGenes - Universities