The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of the proton pathway in bacterial reaction centers: both protons associated with reduction of QB to QBH2 share a common entry point.

The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, Q(B). This process involves the transfer of two protons from the aqueous solution to the protein-bound Q(B) molecule. The second proton, H(+)(2), is supplied to Q(B) by Glu-L212, an internal residue protonated in response to formation of Q(A)(-) and Q(B)(-). In this work, the pathway for H(+)(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of Q(A) (DQ(A)-->D(+)Q(A)(-)) and Q(B) (DQ(B)-->D(+)Q(B)(-)), studied by using pH-sensitive dyes. The other was the electron transfer k(AB)((1)) (Q(A)(-)Q(B)-->Q(A)Q(B)(-)). At pH 8.5, binding of Zn(2+), Cd(2+), or Ni(2+) reduced the rates of proton uptake upon Q(A)(-) and Q(B)(-) formation as well as k(AB)((1)) by approximately an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D(+)Q(A)(-) is formed 10(5)-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212-->Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn(2+) binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H(+)(2) was thus identified to be the same as for the first proton H(+)(1), close to the metal binding region Asp-H124, His-H126, and His-H128.[1]

References

  1. Identification of the proton pathway in bacterial reaction centers: both protons associated with reduction of QB to QBH2 share a common entry point. Adelroth, P., Paddock, M.L., Sagle, L.B., Feher, G., Okamura, M.Y. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
 
WikiGenes - Universities