The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rhodobacter

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodobacter

  • Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli [1].
  • In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms [2].
  • We report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhodobacter capsulatus, a purple nonsulfur photosynthetic bacterium [3].
  • The sequence of the C. vibrioforme hemB gene predicts a HemB protein that contains 328 amino acids, has a molecular weight of 36,407, and is 53% identical to the homologous proteins of Synechocystis sp. PCC 6301 and Rhodobacter capsulatus [4].
  • In this study, we investigated the monovinyl and divinyl characteristics of protochlorophyllide and chlorophyllide in the purple non-sulfur photosynthetic eubacterium Rhodobacter capsulatus [5].
 

High impact information on Rhodobacter

  • In this study we show that the PpsR repressor from Rhodobacter sphaeroides binds to DNA in a redox-dependent manner through the formation/breakage of an intramolecular disulfide bond [6].
  • Mammalian peripheral-type benzodiazepine receptor is homologous to CrtK protein of rhodobacter capsulatus, a photosynthetic bacterium [7].
  • The crystal structure of DMSO reductase from Rhodobacter sphaeroides reveals a monooxo molybdenum cofactor containing two molybdopterin guanine dinucleotides that asymmetrically coordinate the molybdenum through their dithiolene groups [8].
  • An aspartic acid residue has been introduced near ring V of the L-side accessory bacteriochlorophyll (BCHlL) or the photosynthetic reaction center in a rhodobacter capsulatus mutant in which a His also replaces Leu 212 on the M-polypeptide [9].
  • Unusually large electric field effects have been measured for the absorption spectra of carotenoids (spheroidene) in the B800-850 light-harvesting complex from the photosynthetic bacterium Rhodobacter sphaeroides [10].
 

Chemical compound and disease context of Rhodobacter

  • To investigate the mechanism of taxol-induced macrophage stimulation, we evaluated the ability of Rhodobacter sphaeroides diphosphoryl lipid A (RsDPLA) and SDZ 880.431 to block taxol-induced effects [11].
  • A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria [12].
  • Initial characterization of site-directed mutants of tyrosine M210 in the reaction centre of Rhodobacter sphaeroides [13].
  • Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus [14].
  • Using 1-, 2-, 3- and 4-13C site-specifically labelled ubiquinone-10, reconstituted at the QA site of Rhodobacter sphaeroides R26 reaction centres, the infra-red bands dominated by the 1- and 4-C = O vibration of QA are assigned in the QA(-)-QA difference spectra [15].
 

Biological context of Rhodobacter

 

Anatomical context of Rhodobacter

  • Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes [21].
  • Diphosphoryl lipid A derived from the nontoxic LPS of Rhodobacter sphaeroides (RsDPLA) has been shown to be a powerful LPS antagonist in both human and murine cell lines [22].
  • Analysis of the motA flagellar motor gene from Rhodobacter sphaeroides, a bacterium with a unidirectional, stop-start flagellum [23].
  • The purple photosynthetic bacterium Rhodobacter sphaeroides has three loci encoding multiple homologues of the bacterial chemosensory proteins: 13 putative chemoreceptors, four CheW, four CheA, six CheY, two CheB and three CheR [24].
  • A periplasmic binding protein essential for high-affinity transport of the C4-dicarboxylates malate, succinate and fumarate across the cytoplasmic membrane of the purple photosynthetic bacterium Rhodobacter capsulatus has been purified to homogeneity and some of its ligand-binding properties characterized [25].
 

Gene context of Rhodobacter

 

Analytical, diagnostic and therapeutic context of Rhodobacter

  • In reaction centers of Rhodobacter sphaeroides, site-directed mutagenesis has implicated several acidic residues in the delivery of protons to the secondary quinone (Q(B)) during reduction to quinol [31].
  • The overall structures of the R.rubrum LH1 alpha and beta-polypeptides are different from those previously reported for the LH1 beta-polypeptide of Rhodobacter sphaeroides, but are very similar to the structures of the corresponding LH2 alpha and beta-polypeptides determined by X-ray crystallography [32].
  • The light-induced QA-/QA FTIR difference spectrum of the photoreduction of the primary quinone (QA) in reaction centers (RCs) from Rhodobacter sphaeroides exhibits a set of complex differential bands between 1750 and 1715 cm(-1) [33].
  • Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus [34].
  • In this paper, we report the circular dichroism (CD) spectra of two types of LH2-only mutants of Rhodobacter sphaeroides [35].

References

  1. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Gibson, L.C., Willows, R.D., Kannangara, C.G., von Wettstein, D., Hunter, C.N. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  2. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Joshi, H.M., Tabita, F.R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Armstrong, G.A., Alberti, M., Hearst, J.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  4. Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme, porphobilinogen synthase. Rhie, G., Avissar, Y.J., Beale, S.I. J. Biol. Chem. (1996) [Pubmed]
  5. Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. Suzuki, J.Y., Bauer, C.E. J. Biol. Chem. (1995) [Pubmed]
  6. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Masuda, S., Bauer, C.E. Cell (2002) [Pubmed]
  7. Mammalian peripheral-type benzodiazepine receptor is homologous to CrtK protein of rhodobacter capsulatus, a photosynthetic bacterium. Baker, M.E., Fanestil, D.D. Cell (1991) [Pubmed]
  8. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K.V., Rees, D.C. Science (1996) [Pubmed]
  9. Control of electron transfer between the L- and M-sides of photosynthetic reaction centers. Heller, B.A., Holten, D., Kirmaier, C. Science (1995) [Pubmed]
  10. Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex. Gottfried, D.S., Steffen, M.A., Boxer, S.G. Science (1991) [Pubmed]
  11. Lipopolysaccharide antagonists block taxol-induced signaling in murine macrophages. Manthey, C.L., Qureshi, N., Stütz, P.L., Vogel, S.N. J. Exp. Med. (1993) [Pubmed]
  12. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Gomelsky, M., Klug, G. Trends Biochem. Sci. (2002) [Pubmed]
  13. Initial characterization of site-directed mutants of tyrosine M210 in the reaction centre of Rhodobacter sphaeroides. Gray, K.A., Farchaus, J.W., Wachtveitl, J., Breton, J., Oesterhelt, D. EMBO J. (1990) [Pubmed]
  14. Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus. Daldal, F., Tokito, M.K., Davidson, E., Faham, M. EMBO J. (1989) [Pubmed]
  15. Asymmetric binding of the 1- and 4-C=O groups of QA in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10. Brudler, R., de Groot, H.J., van Liemt, W.B., Steggerda, W.F., Esmeijer, R., Gast, P., Hoff, A.J., Lugtenburg, J., Gerwert, K. EMBO J. (1994) [Pubmed]
  16. Fine tuning bacterial chemotaxis: analysis of Rhodobacter sphaeroides behaviour under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY genes. Shah, D.S., Porter, S.L., Martin, A.C., Hamblin, P.A., Armitage, J.P. EMBO J. (2000) [Pubmed]
  17. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Suzuki, J.Y., Bauer, C.E. Plant Cell (1992) [Pubmed]
  18. The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Benning, C., Beatty, J.T., Prince, R.C., Somerville, C.R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  19. Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Hess, S., Chachisvilis, M., Timpmann, K., Jones, M.R., Fowler, G.J., Hunter, C.N., Sundström, V. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  20. A novel mechanism for the regulation of photosynthesis gene expression by the TspO outer membrane protein of Rhodobacter sphaeroides 2.4.1. Yeliseev, A.A., Kaplan, S. J. Biol. Chem. (1999) [Pubmed]
  21. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes. Comayras, F., Jungas, C., Lavergne, J. J. Biol. Chem. (2005) [Pubmed]
  22. Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. Kutuzova, G.D., Albrecht, R.M., Erickson, C.M., Qureshi, N. J. Immunol. (2001) [Pubmed]
  23. Analysis of the motA flagellar motor gene from Rhodobacter sphaeroides, a bacterium with a unidirectional, stop-start flagellum. Shah, D.S., Sockett, R.E. Mol. Microbiol. (1995) [Pubmed]
  24. The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Porter, S.L., Warren, A.V., Martin, A.C., Armitage, J.P. Mol. Microbiol. (2002) [Pubmed]
  25. Purification, characterization and nucleotide sequence of the periplasmic C4-dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus. Shaw, J.G., Hamblin, M.J., Kelly, D.J. Mol. Microbiol. (1991) [Pubmed]
  26. Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. Farchaus, J.W., Barz, W.P., Grünberg, H., Oesterhelt, D. EMBO J. (1992) [Pubmed]
  27. Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. Crofts, A.R., Hong, S., Ugulava, N., Barquera, B., Gennis, R., Guergova-Kuras, M., Berry, E.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  28. Limited role of ceramide in lipopolysaccharide-mediated mitogen-activated protein kinase activation, transcription factor induction, and cytokine release. Medvedev, A.E., Blanco, J.C., Qureshi, N., Vogel, S.N. J. Biol. Chem. (1999) [Pubmed]
  29. Acyclic analogue of lipid A stimulates TNF-alpha and arachidonate release via a unique LPS-signaling pathway. Fagan, M.A., Liu, Y., Stütz, P., Vyplel, H., Golenbock, D.T. J. Immunol. (1994) [Pubmed]
  30. The role of extra fragment at the C-terminal of cytochrome b (Residues 421-445) in the cytochrome bc1 complex from Rhodobacter sphaeroides. Liu, X., Yu, C.A., Yu, L. J. Biol. Chem. (2004) [Pubmed]
  31. Small weak acids reactivate proton transfer in reaction centers from Rhodobacter sphaeroides mutated at AspL210 and AspM17. Takahashi, E., Wraight, C.A. J. Biol. Chem. (2006) [Pubmed]
  32. Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions. Wang, Z.Y., Gokan, K., Kobayashi, M., Nozawa, T. J. Mol. Biol. (2005) [Pubmed]
  33. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C==O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides. Breton, J., Nabedryk, E., Allen, J.P., Williams, J.C. Biochemistry (1997) [Pubmed]
  34. Active site heterogeneity in dimethyl sulfoxide reductase from Rhodobacter capsulatus revealed by Raman spectroscopy. Bell, A.F., He, X., Ridge, J.P., Hanson, G.R., McEwan, A.G., Tonge, P.J. Biochemistry (2001) [Pubmed]
  35. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Koolhaus, M.H., Frese, R.N., Fowler, G.J., Bibby, T.S., Georgakopoulou, S., van der Zwan, G., Hunter, C.N., van Grondelle, R. Biochemistry (1998) [Pubmed]
 
WikiGenes - Universities