The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The G-protein inhibitor, pertussis toxin, inhibits the secretion of brain-derived neurotrophic factor.

Secretion of neurotrophins is critical for the delivery of neurotrophic support. Brain-derived neurotrophic factor is targeted to a regulated secretory pathway in neurons as well as the neurosecretory AtT-20 cells. Here, we show that pertussis toxin, which inactivates Gi and Go G proteins, inhibits up to 50% of the regulated release of brain derived neurotrophic factor by AtT-20 cells. To determine whether pertussis toxin-sensitive G proteins may regulate brain-derived neurotrophic factor release in vivo, the effect of intraocular pertussis toxin was assessed on the isthmo-optic nucleus in the developing chick visual system. The isthmo-optic nucleus projects axons from the midbrain to innervate retinal amacrine cells and depends on target-derived brain-derived neurotrophic factor between embryonic days 13 and 17 (E13-17). During this period approximately 50% of isthmo-optic neurons are eliminated by programmed cell death. Intraocular pertussis toxin administered at E13 increased cell death of isthmo-optic neurons by 42%, whereas injections at E19 had no effect. Co-injection of brain-derived neurotrophic factor with pertussis toxin rescued approximately 50% of isthmo-optic neurons from enhanced cell death, although overall retinal brain derived neurotrophic factor protein levels were unaffected by pertussis toxin. Retrograde transport of exogenous 125I-labeled brain derived neurotrophic factor from the retina to the midbrain was increased by co-administration of pertussis toxin, possibly owing to diminished competition from endogenously released brain-derived neurotrophic factors for the receptors that mediate retrograde axonal transport.These data suggest that the release of a major fraction of brain-derived neurotrophic factor in the secretory pathway in vitro and in vivo is regulated by the activity of pertussis toxin-sensitive G proteins.[1]

References

  1. The G-protein inhibitor, pertussis toxin, inhibits the secretion of brain-derived neurotrophic factor. Gunther, E.C., von Bartheld, C.S., Goodman, L.J., Johnson, J.E., Bothwell, M. Neuroscience (2000) [Pubmed]
 
WikiGenes - Universities