The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Cell Death

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cell Death


Psychiatry related information on Cell Death


High impact information on Cell Death

  • The Fas/FasL system is responsible for activation-induced cell death but also plays an important role in lymphocyte-mediated killing under certain circumstances [11].
  • TNF and TNFR family proteins play important roles in the control of cell death, proliferation, autoimmunity, the function of immune cells, or the organogenesis of lymphoid organs [12].
  • Recent evidence has indicated that the caspase family of cysteine proteases is a central effector in apoptotic cell death and is absolutely responsible for many of the morphological features of apoptosis [13].
  • In contrast, healthy cells require caspase activation to undergo cell death induced by surface receptors [13].
  • Although much has been learned regarding how these cytosolic tyrosine kinases are activated and recruited to the TCR complex, relatively little is understood about how these initial events are translated into transcriptional activation of genes that regulate cytokine production, cell proliferation, and cell death [14].

Chemical compound and disease context of Cell Death


Biological context of Cell Death


Anatomical context of Cell Death


Associations of Cell Death with chemical compounds

  • Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite [29].
  • Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death [30].
  • Excitotoxicity is a process in which glutamate or other excitatory amino acids induce neuronal cell death [31].
  • Increased de novo ceramide synthesis triggers apoptosis and is associated with massive cell death during neural tube closure, raising the possibility that neural degeneration in HSN1 is due to ceramide-induced apoptotic cell death [32].
  • H2B S10A mutants are resistant to cell death elicited by H(2)O(2) while H2B S10E phospho-site mimics promote cell death and induce the "constitutive" formation of condensed chromatin [33].

Gene context of Cell Death


Analytical, diagnostic and therapeutic context of Cell Death


  1. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J., Rubinsztein, D.C. Nat. Genet. (2004) [Pubmed]
  2. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Bano, D., Young, K.W., Guerin, C.J., Lefeuvre, R., Rothwell, N.J., Naldini, L., Rizzuto, R., Carafoli, E., Nicotera, P. Cell (2005) [Pubmed]
  3. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., Suzuki, T. Nat. Genet. (2000) [Pubmed]
  4. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Ahmed, Y., Hayashi, S., Levine, A., Wieschaus, E. Cell (1998) [Pubmed]
  5. Adenosine-deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, atelectasis and small intestinal cell death. Migchielsen, A.A., Breuer, M.L., van Roon, M.A., te Riele, H., Zurcher, C., Ossendorp, F., Toutain, S., Hershfield, M.S., Berns, A., Valerio, D. Nat. Genet. (1995) [Pubmed]
  6. Metallothioneins and cell death by anticancer drugs. Lazo, J.S., Pitt, B.R. Annu. Rev. Pharmacol. Toxicol. (1995) [Pubmed]
  7. beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer's disease. Mattson, M.P., Barger, S.W., Cheng, B., Lieberburg, I., Smith-Swintosky, V.L., Rydel, R.E. Trends Neurosci. (1993) [Pubmed]
  8. Neuronal cell death in Huntington's disease: a potential role for dopamine. Jakel, R.J., Maragos, W.F. Trends Neurosci. (2000) [Pubmed]
  9. Interleukin 1 in the brain: biology, pathology and therapeutic target. Rothwell, N.J., Luheshi, G.N. Trends Neurosci. (2000) [Pubmed]
  10. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Colell, A., García-Ruiz, C., Miranda, M., Ardite, E., Marí, M., Morales, A., Corrales, F., Kaplowitz, N., Fernández-Checa, J.C. Gastroenterology (1998) [Pubmed]
  11. Lymphocyte-mediated cytotoxicity. Russell, J.H., Ley, T.J. Annu. Rev. Immunol. (2002) [Pubmed]
  12. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Theill, L.E., Boyle, W.J., Penninger, J.M. Annu. Rev. Immunol. (2002) [Pubmed]
  13. The central effectors of cell death in the immune system. Rathmell, J.C., Thompson, C.B. Annu. Rev. Immunol. (1999) [Pubmed]
  14. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Clements, J.L., Boerth, N.J., Lee, J.R., Koretzky, G.A. Annu. Rev. Immunol. (1999) [Pubmed]
  15. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Yano, S., Tokumitsu, H., Soderling, T.R. Nature (1998) [Pubmed]
  16. Caspase-1 activation by Salmonella. Järveläinen, H.A., Galmiche, A., Zychlinsky, A. Trends Cell Biol. (2003) [Pubmed]
  17. Lymphotoxins and cytomegalovirus cooperatively induce interferon-beta, establishing host-virus détente. Benedict, C.A., Banks, T.A., Senderowicz, L., Ko, M., Britt, W.J., Angulo, A., Ghazal, P., Ware, C.F. Immunity (2001) [Pubmed]
  18. Re: Effect of long-term estrogen deprivation on apoptotic responses of breast cancer cells to 17 beta-estradiol and the two faces of Janus: sex steroids as mediators of both cell proliferation and cell death. Jordan, V.C., Liu, H., Dardes, R. J. Natl. Cancer Inst. (2002) [Pubmed]
  19. Modulation of peroxidation in murine melanoma by dietary tyrosine-phenylalanine restriction, levodopa methylester chemotherapy, and sodium ascorbate supplementation. Pierson, H.F., Meadows, G.G. J. Natl. Cancer Inst. (1985) [Pubmed]
  20. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Reis, T., Edgar, B.A. Cell (2004) [Pubmed]
  21. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Nutt, L.K., Margolis, S.S., Jensen, M., Herman, C.E., Dunphy, W.G., Rathmell, J.C., Kornbluth, S. Cell (2005) [Pubmed]
  22. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., Taya, Y. Cell (2000) [Pubmed]
  23. A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. White, R.A., Lehmann, R. Cell (1986) [Pubmed]
  24. Cytochrome C-mediated apoptosis. Jiang, X., Wang, X. Annu. Rev. Biochem. (2004) [Pubmed]
  25. The p70 tumor necrosis factor receptor mediates cytotoxicity. Heller, R.A., Song, K., Fan, N., Chang, D.J. Cell (1992) [Pubmed]
  26. Immunity to K1 killer toxin: internal TOK1 blockade. Sesti, F., Shih, T.M., Nikolaeva, N., Goldstein, S.A. Cell (2001) [Pubmed]
  27. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Imai, Y., Soda, M., Inoue, H., Hattori, N., Mizuno, Y., Takahashi, R. Cell (2001) [Pubmed]
  28. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Torres, M.A., Jones, J.D., Dangl, J.L. Nat. Genet. (2005) [Pubmed]
  29. Ischemic cell death in brain neurons. Lipton, P. Physiol. Rev. (1999) [Pubmed]
  30. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Rizzuto, R., Pozzan, T. Physiol. Rev. (2006) [Pubmed]
  31. c-fos regulates neuronal excitability and survival. Zhang, J., Zhang, D., McQuade, J.S., Behbehani, M., Tsien, J.Z., Xu, M. Nat. Genet. (2002) [Pubmed]
  32. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Dawkins, J.L., Hulme, D.J., Brahmbhatt, S.B., Auer-Grumbach, M., Nicholson, G.A. Nat. Genet. (2001) [Pubmed]
  33. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Ahn, S.H., Cheung, W.L., Hsu, J.Y., Diaz, R.L., Smith, M.M., Allis, C.D. Cell (2005) [Pubmed]
  34. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Bernal, J.A., Luna, R., Espina, A., Lázaro, I., Ramos-Morales, F., Romero, F., Arias, C., Silva, A., Tortolero, M., Pintor-Toro, J.A. Nat. Genet. (2002) [Pubmed]
  35. The response of human epithelial cells to TNF involves an inducible autocrine cascade. Janes, K.A., Gaudet, S., Albeck, J.G., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K. Cell (2006) [Pubmed]
  36. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Yang, E., Zha, J., Jockel, J., Boise, L.H., Thompson, C.B., Korsmeyer, S.J. Cell (1995) [Pubmed]
  37. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., Wallach, D. Cell (1996) [Pubmed]
  38. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Chang, L., Kamata, H., Solinas, G., Luo, J.L., Maeda, S., Venuprasad, K., Liu, Y.C., Karin, M. Cell (2006) [Pubmed]
  39. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Liu, Z.G., Hsu, H., Goeddel, D.V., Karin, M. Cell (1996) [Pubmed]
  40. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Mateo, V., Lagneaux, L., Bron, D., Biron, G., Armant, M., Delespesse, G., Sarfati, M. Nat. Med. (1999) [Pubmed]
  41. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Los, M., Van de Craen, M., Penning, L.C., Schenk, H., Westendorp, M., Baeuerle, P.A., Dröge, W., Krammer, P.H., Fiers, W., Schulze-Osthoff, K. Nature (1995) [Pubmed]
  42. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Yin, Y., Terauchi, Y., Solomon, G.G., Aizawa, S., Rangarajan, P.N., Yazaki, Y., Kadowaki, T., Barrett, J.C. Nature (1998) [Pubmed]
  43. Mixed-lineage kinases: a target for the prevention of neurodegeneration. Wang, L.H., Besirli, C.G., Johnson, E.M. Annu. Rev. Pharmacol. Toxicol. (2004) [Pubmed]
WikiGenes - Universities