The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of the p53-homologue p73 in E2F1-induced apoptosis.

Most human cancers harbour aberrations of cell-cycle control, which result in deregulated activity of the E2F transcription factors with concomitant enhanced cell-cycle progression. Oncogenic signalling by E2F1 has recently been linked to stabilization and activation of the tumour suppressor p53 (refs 1,3,4). The p73 protein shares substantial sequence homology and functional similarity with p53 (refs 5-7 ). Hence, several previously considered p53-independent cellular activities may be attributable to p73. Here we provide evidence that E2F1 directly activates transcription of TP73, leading to activation of p53-responsive target genes and apoptosis. Disruption of p73 function by a tumour-derived p53 mutant reduced E2F1-mediated apoptosis. Thus, p73 activation by deregulated E2F1 activity might constitute a p53-independent, anti-tumorigenic safeguard mechanism.[1]

References

  1. Role of the p53-homologue p73 in E2F1-induced apoptosis. Stiewe, T., Pützer, B.M. Nat. Genet. (2000) [Pubmed]
 
WikiGenes - Universities