The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Isolation of mutations that disrupt cooperative DNA binding by the Drosophila bicoid protein.

Cooperative DNA binding is thought to contribute to the ability of the Drosophila melanogaster protein, Bicoid, to stimulate transcription of target genes in precise sub-domains within the embryo. As a first step toward testing this idea, we devised a genetic screen to isolate mutations in Bicoid that specifically disrupt cooperative interactions, but do not disrupt DNA recognition or transcription activation. The screen was carried out in Saccharomyces cerevisiae and 12 cooperativity mutants were identified. The mutations map across most of the Bicoid protein, with some located within the DNA-binding domain (homeodomain). Four homeodomain mutants were characterized in yeast and shown to activate a single-site reporter gene to levels comparable to that of wild-type, indicating that DNA binding per se is not affected. However, these mutants failed to show cooperative coupling between high and low-affinity sites, and showed reduced activation of a reporter gene carrying a natural Drosophila enhancer. Homology modeling indicated that none of the four mutations is in residues that contact DNA. Instead, these residues are likely to interact with other DNA-bound Bicoid monomers or other parts of the Bicoid protein. In vitro, the isolated homeodomains did not show strong cooperativity defects, supporting the idea that other regions of Bicoid are also important for cooperativity. This study describes the first systematic screen to identify cooperativity mutations in a eukaryotic DNA-binding protein.[1]

References

 
WikiGenes - Universities