The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Saccharomyces

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Saccharomyces

 

Psychiatry related information on Saccharomyces

  • Human beta-amyloid precursor protein (APP), the transmembrane precursor of the Alzheimer's disease beta-amyloid peptide, was expressed in the yeast Saccharomyces cerevisiae by fusion to prepro-alpha-factor [6].
  • Production process comprises four steps: cooking to hydrolyze inulin into fructose, milling to extract the sugars, fermentation with a strain of Saccharomyces cerevisiae to convert the sugars into ethanol and organoleptic compounds, and, finally, a two-step distillation process [7].
 

High impact information on Saccharomyces

  • This review focuses on eukaryotic translesion synthesis (TLS) DNA polymerases, and the emphasis is on Saccharomyces cerevisiae and human Y-family polymerases (Pols) eta, iota, kappa, and Rev1, as well as on Polzeta, which is a member of the B-family polymerases [8].
  • The MCM proteins are essential replication initiation factors originally identified as proteins required for minichromosome maintenance in Saccharomyces cerevisiae [9].
  • Here we use budding yeast Saccharomyces cerevisiae to show that condensin and Cdc5, a Polo-like kinase, facilitate the removal of cohesin from chromosomes prior to the onset of anaphase I when homologs segregate [10].
  • To evaluate how and from where new peroxisomes are formed, we followed the trafficking route of newly made YFP-tagged Pex3 and Pex19 proteins by real-time fluorescence microscopy in Saccharomyces cerevisiae [11].
  • Six of the eight genes involved in allantoin degradation, which were previously scattered around the genome, became relocated to a single subtelomeric site in an ancestor of S. cerevisiae and Saccharomyces castellii [12].
 

Chemical compound and disease context of Saccharomyces

 

Biological context of Saccharomyces

 

Anatomical context of Saccharomyces

 

Associations of Saccharomyces with chemical compounds

  • Constitutive synthesis of the GAL4 protein, a galactose pathway regulator in Saccharomyces cerevisiae [28].
  • This paper describes the characterisation of a novel imprinted RLGS-M locus, Irigs3, on mouse chromosome 9 (ref. 6). Within this locus we identified the Grf1 (also called Cdc25Mm) gene, which is homologous to the RAS-specific guanine nucleotide exchange factor gene, CDC25, in Saccharomyces cerevisiae [29].
  • The DAL cluster is the largest metabolic gene cluster in yeast and consists of six adjacent genes encoding proteins that enable Saccharomyces cerevisiae to use allantoin as a nitrogen source [12].
  • Neurospora crassa ARG13 and Saccharomyces cerevisiae ARG11 encode mitochondrial carrier family (MCF) proteins that transport ornithine across the mitochondrial inner membrane [30].
  • Recombinant DNA procedures and the yeast transformation technique were used to insert the yeast gene LEU 2 (coding for beta-isopropylmalate dehydrogenase) into the tandem array of ribosomal DNA genes of the yeast Saccharomyces cerevisiae [31].
 

Gene context of Saccharomyces

 

Analytical, diagnostic and therapeutic context of Saccharomyces

References

  1. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Brent, R., Ptashne, M. Cell (1985) [Pubmed]
  2. The Werner syndrome protein is a DNA helicase. Gray, M.D., Shen, J.C., Kamath-Loeb, A.S., Blank, A., Sopher, B.L., Martin, G.M., Oshima, J., Loeb, L.A. Nat. Genet. (1997) [Pubmed]
  3. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Valenzuela, P., Medina, A., Rutter, W.J., Ammerer, G., Hall, B.D. Nature (1982) [Pubmed]
  4. Actin dynamics in vivo. Welch, M.D., Mallavarapu, A., Rosenblatt, J., Mitchison, T.J. Curr. Opin. Cell Biol. (1997) [Pubmed]
  5. Functional analysis of the papilloma virus E2 trans-activator in Saccharomyces cerevisiae. Lambert, P.F., Dostatni, N., McBride, A.A., Yaniv, M., Howley, P.M., Arcangioli, B. Genes Dev. (1989) [Pubmed]
  6. Proteolytic processing and secretion of human beta-amyloid precursor protein in yeast. Evidence for a yeast secretase activity. Zhang, H., Komano, H., Fuller, R.S., Gandy, S.E., Frail, D.E. J. Biol. Chem. (1994) [Pubmed]
  7. Tequila production. Cedeño, M. Crit. Rev. Biotechnol. (1995) [Pubmed]
  8. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Prakash, S., Johnson, R.E., Prakash, L. Annu. Rev. Biochem. (2005) [Pubmed]
  9. MCM proteins in DNA replication. Tye, B.K. Annu. Rev. Biochem. (1999) [Pubmed]
  10. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Yu, H.G., Koshland, D. Cell (2005) [Pubmed]
  11. Contribution of the endoplasmic reticulum to peroxisome formation. Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P., Tabak, H.F. Cell (2005) [Pubmed]
  12. Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Wong, S., Wolfe, K.H. Nat. Genet. (2005) [Pubmed]
  13. In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Mouaheb, N., Thomas, D., Verdoucq, L., Monfort, P., Meyer, Y. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  14. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Eide, L., Bjørås, M., Pirovano, M., Alseth, I., Berdal, K.G., Seeberg, E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  15. Soluble factors stimulating secretory protein translocation in bacteria and yeast can substitute for each other. Fecycz, I.T., Blobel, G. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  16. An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Edwards, H., Trézéguet, V., Schimmel, P. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  17. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Lee, C.P., RajBhandary, U.L. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  18. Pch2 links chromatin silencing to meiotic checkpoint control. San-Segundo, P.A., Roeder, G.S. Cell (1999) [Pubmed]
  19. RNA synthesis and control of cell division in the yeast S. cerevisiae. Johnston, G.C., Singer, R.A. Cell (1978) [Pubmed]
  20. DNA sequence of a mutation in the leader region of the yeast iso-1-cytochrome c mRNA. Stiles, J.I., Szostak, J.W., Young, A.T., Wu, R., Consaul, S., Sherman, F. Cell (1981) [Pubmed]
  21. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Hofmann, R.M., Pickart, C.M. Cell (1999) [Pubmed]
  22. Splice points of the third intron in the yeast mitochondrial cytochrome b gene. Lazowska, J., Jacq, C., Slonimski, P.P. Cell (1981) [Pubmed]
  23. Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barrell, B., Neupert, W. Cell (1994) [Pubmed]
  24. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Schmidt, A., Bickle, M., Beck, T., Hall, M.N. Cell (1997) [Pubmed]
  25. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Purdue, P.E., Zhang, J.W., Skoneczny, M., Lazarow, P.B. Nat. Genet. (1997) [Pubmed]
  26. Conservation between yeast and man of a protein associated with U5 small nuclear ribonucleoprotein. Anderson, G.J., Bach, M., Lührmann, R., Beggs, J.D. Nature (1989) [Pubmed]
  27. An estrogen-binding protein and endogenous ligand in Saccharomyces cerevisiae: possible hormone receptor system. Feldman, D., Do, Y., Burshell, A., Stathis, P., Loose, D.S. Science (1982) [Pubmed]
  28. Constitutive synthesis of the GAL4 protein, a galactose pathway regulator in Saccharomyces cerevisiae. Perlman, D., Hopper, J.E. Cell (1979) [Pubmed]
  29. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Plass, C., Shibata, H., Kalcheva, I., Mullins, L., Kotelevtseva, N., Mullins, J., Kato, R., Sasaki, H., Hirotsune, S., Okazaki, Y., Held, W.A., Hayashizaki, Y., Chapman, V.M. Nat. Genet. (1996) [Pubmed]
  30. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Camacho, J.A., Obie, C., Biery, B., Goodman, B.K., Hu, C.A., Almashanu, S., Steel, G., Casey, R., Lambert, M., Mitchell, G.A., Valle, D. Nat. Genet. (1999) [Pubmed]
  31. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Petes, T.D. Cell (1980) [Pubmed]
  32. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Finley, D., Ozkaynak, E., Varshavsky, A. Cell (1987) [Pubmed]
  33. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D., Haber, J.E. Cell (1998) [Pubmed]
  34. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Weinrich, S.L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V.M., Holt, S.E., Bodnar, A.G., Lichtsteiner, S., Kim, N.W., Trager, J.B., Taylor, R.D., Carlos, R., Andrews, W.H., Wright, W.E., Shay, J.W., Harley, C.B., Morin, G.B. Nat. Genet. (1997) [Pubmed]
  35. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Chen, C., Kolodner, R.D. Nat. Genet. (1999) [Pubmed]
  36. Novel dominant mutations in Saccharomyces cerevisiae MSH6. Das Gupta, R., Kolodner, R.D. Nat. Genet. (2000) [Pubmed]
  37. Structure of the Escherichia coli RNA polymerase alpha subunit amino-terminal domain. Zhang, G., Darst, S.A. Science (1998) [Pubmed]
  38. Molecular cloning, DNA structure, and RNA analysis of the arginase gene in Saccharomyces cerevisiae. A study of cis-dominant regulatory mutations. Jauniaux, J.C., Dubois, E., Vissers, S., Crabeel, M., Wiame, J.M. EMBO J. (1982) [Pubmed]
  39. Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. Camonis, J.H., Kalékine, M., Gondré, B., Garreau, H., Boy-Marcotte, E., Jacquet, M. EMBO J. (1986) [Pubmed]
  40. Effects of null mutations and overexpression of capping protein on morphogenesis, actin distribution and polarized secretion in yeast. Amatruda, J.F., Gattermeir, D.J., Karpova, T.S., Cooper, J.A. J. Cell Biol. (1992) [Pubmed]
  41. Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. Brockerhoff, S.E., Davis, T.N. J. Cell Biol. (1992) [Pubmed]
 
WikiGenes - Universities