The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nonvertebrate hemoglobins: functions and molecular adaptations.

Hemoglobin (Hb) occurs in all the kingdoms of living organisms. Its distribution is episodic among the nonvertebrate groups in contrast to vertebrates. Nonvertebrate Hbs range from single-chain globins found in bacteria, algae, protozoa, and plants to large, multisubunit, multidomain Hbs found in nematodes, molluscs and crustaceans, and the giant annelid and vestimentiferan Hbs comprised of globin and nonglobin subunits. Chimeric hemoglobins have been found recently in bacteria and fungi. Hb occurs intracellularly in specific tissues and in circulating red blood cells (RBCs) and freely dissolved in various body fluids. In addition to transporting and storing O(2) and facilitating its diffusion, several novel Hb functions have emerged, including control of nitric oxide (NO) levels in microorganisms, use of NO to control the level of O(2) in nematodes, binding and transport of sulfide in endosymbiont-harboring species and protection against sulfide, scavenging of O(2 )in symbiotic leguminous plants, O(2 )sensing in bacteria and archaebacteria, and dehaloperoxidase activity useful in detoxification of chlorinated materials. This review focuses on the extensive variation in the functional properties of nonvertebrate Hbs, their O(2 )binding affinities, their homotropic interactions (cooperativity), and the sensitivities of these parameters to temperature and heterotropic effectors such as protons and cations. Whenever possible, it attempts to relate the ligand binding properties to the known molecular structures. The divergent and convergent evolutionary trends evident in the structures and functions of nonvertebrate Hbs appear to be adaptive in extending the inhabitable environment available to Hb-containing organisms.[1]

References

  1. Nonvertebrate hemoglobins: functions and molecular adaptations. Weber, R.E., Vinogradov, S.N. Physiol. Rev. (2001) [Pubmed]
 
WikiGenes - Universities