The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis.

It is well established that the response regulator of the chemotaxis system of Escherichia coli, CheY, can undergo acetylation at lysine residues 92 and 109 via a reaction mediated by acetyl-CoA synthetase ( Acs). The outcome is activation of CheY, which results in increased clockwise rotation. Nevertheless, it has not been known whether CheY acetylation is involved in chemotaxis. To address this question, we examined the chemotactic behaviour of two mutants, one lacking the acetylating enzyme Acs, and the other having an arginine-for-lysine substitution at residue 92 of CheY - one of the acetylation sites. The Deltaacs mutant exhibited much reduced sensitivity to chemotactic stimuli (both attractants and repellents) in tethering assays and greatly reduced responses in ring-forming, plug and capillary assays. Likewise, the cheY(92KR) mutant had reduced sensitivity to repellents in tethering assays and a reduced response in capillary assays. However, its response to the addition or removal of attractants was normal. These observations suggest that Acs- mediated acetylation of CheY is involved in chemotaxis and that the acetylation site Lys-92 is only involved in the response to repellents. The observation that, in the cheY(92KR) mutant, the addition of a repellent was not chemotactically equivalent to the removal of an attractant also suggests that there are different signalling pathways for attractants and repellents in E. coli.[1]


WikiGenes - Universities