The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Actin dynamics at pointed ends regulates thin filament length in striated muscle.

Regulation of actin dynamics at filament ends determines the organization and turnover of actin cytoskeletal structures. In striated muscle, it is believed that tight capping of the fast-growing (barbed) ends by CapZ and of the slow-growing (pointed) ends by tropomodulin (Tmod) stabilizes the uniform lengths of actin (thin) filaments in myofibrils. Here we demonstrate for the first time that both CapZ and Tmod are dynamic on the basis of the rapid incorporation of microinjected rhodamine-labelled actin (rho-actin) at both barbed and pointed ends and from the photobleaching of green fluorescent protein (GFP)-labelled Tmod. Unexpectedly, the inhibition of actin dynamics at pointed ends by GFP-Tmod overexpression results in shorter thin filaments, whereas the inhibition of actin dynamics at barbed ends by cytochalasin D has no effect on length. These data demonstrate that the actin filaments in myofibrils are relatively dynamic despite the presence of capping proteins, and that regulated actin assembly at pointed ends determines the length of thin filaments.[1]

References

  1. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Littlefield, R., Almenar-Queralt, A., Fowler, V.M. Nat. Cell Biol. (2001) [Pubmed]
 
WikiGenes - Universities