The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Microfilaments


Psychiatry related information on Microfilaments

  • These findings suggest that actin filaments play a role in modulating [Ca2+]i responses to neurotoxic insults and that depolymerization of actin can protect neurons against insults relevant to the pathogenesis of Alzheimer's disease [6].

High impact information on Microfilaments


Chemical compound and disease context of Microfilaments


Biological context of Microfilaments


Anatomical context of Microfilaments

  • Double immunolabeling revealed that newly assembled keratin was not codistributed with microfilament bundles, microtubules or vimentin filaments [21].
  • These results suggested that vinculin interacts with a specific site located at the growing ends of actin filaments in a cytochalasin-like manner, a property consistent with its proposed function as a linkage protein between filaments and the plasma membranes [16].
  • The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts [22].
  • We have studied the mechanism of Ca++-dependent restriction of actin filament length by villin, one of the major actin-associated proteins of intestinal microvilli microfilament bundles [23].
  • We propose a model for selection of lamellipodial versus filopodial organization in which CP is a negative regulator of filopodia formation and Ena/VASP has recruiting/activating functions downstream of actin filament elongation in addition to its previously suggested anticapping and antibranching activities [24].

Associations of Microfilaments with chemical compounds


Gene context of Microfilaments


Analytical, diagnostic and therapeutic context of Microfilaments


  1. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A., Mitchison, T.J. Science (1998) [Pubmed]
  2. Actin-binding protein requirement for cortical stability and efficient locomotion. Cunningham, C.C., Gorlin, J.B., Kwiatkowski, D.J., Hartwig, J.H., Janmey, P.A., Byers, H.R., Stossel, T.P. Science (1992) [Pubmed]
  3. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Dina, O.A., McCarter, G.C., de Coupade, C., Levine, J.D. Neuron (2003) [Pubmed]
  4. A chimeric toxin to study the role of the 21 kDa GTP binding protein rho in the control of actin microfilament assembly. Aullo, P., Giry, M., Olsnes, S., Popoff, M.R., Kocks, C., Boquet, P. EMBO J. (1993) [Pubmed]
  5. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. Chakraborty, T., Ebel, F., Domann, E., Niebuhr, K., Gerstel, B., Pistor, S., Temm-Grove, C.J., Jockusch, B.M., Reinhard, M., Walter, U. EMBO J. (1995) [Pubmed]
  6. Cytochalasins protect hippocampal neurons against amyloid beta-peptide toxicity: evidence that actin depolymerization suppresses Ca2+ influx. Furukawa, K., Mattson, M.P. J. Neurochem. (1995) [Pubmed]
  7. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Higgs, H.N., Pollard, T.D. Annu. Rev. Biochem. (2001) [Pubmed]
  8. Mechanism of action and in vivo role of platelet-derived growth factor. Heldin, C.H., Westermark, B. Physiol. Rev. (1999) [Pubmed]
  9. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., Yang, Z. Cell (2005) [Pubmed]
  10. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Drees, F., Pokutta, S., Yamada, S., Nelson, W.J., Weis, W.I. Cell (2005) [Pubmed]
  11. Microtubules and microfilaments in fixed and permeabilized cells are selectively decorated by nerve growth factor. Nasi, S., Cirillo, D., Naldini, L., Marchisio, P.C., Calissano, P. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  12. Tropomyosin synthesis accompanies formation of actin filaments in embryonal carcinoma cells induced to differentiate by hexamethylene bisacetamide. Paulin, D., Perreau, J., Jakob, H., Jacob, F., Yaniv, M. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  13. Arrest of Listeria movement in host cells by a bacterial ActA analogue: implications for actin-based motility. Southwick, F.S., Purich, D.L. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  14. Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis. Segundo, C., Medina, F., Rodríguez, C., Martínez-Palencia, R., Leyva-Cobián, F., Brieva, J.A. Blood (1999) [Pubmed]
  15. The effect of an isovolumic left ventricle on the coronary vascular competence during reflow after global ischemia in the rat heart. Humphrey, S.M., Thomson, R.W., Gavin, J.B. Circ. Res. (1981) [Pubmed]
  16. High-affinity interaction of vinculin with actin filaments in vitro. Wilkins, J.A., Lin, S. Cell (1982) [Pubmed]
  17. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Witke, W., Sharpe, A.H., Hartwig, J.H., Azuma, T., Stossel, T.P., Kwiatkowski, D.J. Cell (1995) [Pubmed]
  18. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Arber, S., Barbayannis, F.A., Hanser, H., Schneider, C., Stanyon, C.A., Bernard, O., Caroni, P. Nature (1998) [Pubmed]
  19. Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Yamashiro, S., Yamakita, Y., Hosoya, H., Matsumura, F. Nature (1991) [Pubmed]
  20. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Peng, C.Y., Manning, L., Albertson, R., Doe, C.Q. Nature (2000) [Pubmed]
  21. De novo synthesis and specific assembly of keratin filaments in nonepithelial cells after microinjection of mRNA for epidermal keratin. Kreis, T.E., Geiger, B., Schmid, E., Jorcano, J.L., Franke, W.W. Cell (1983) [Pubmed]
  22. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Singer, I.I. Cell (1979) [Pubmed]
  23. F actin assembly modulated by villin: Ca++-dependent nucleation and capping of the barbed end. Glenney, J.R., Kaulfus, P., Weber, K. Cell (1981) [Pubmed]
  24. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Mejillano, M.R., Kojima, S., Applewhite, D.A., Gertler, F.B., Svitkina, T.M., Borisy, G.G. Cell (2004) [Pubmed]
  25. Dihydrocytochalasin B disorganizes actin cytoarchitecture and inhibits initiation of DNA synthesis in 3T3 cells. Maness, P.F., Walsh, R.C. Cell (1982) [Pubmed]
  26. Early changes in the distribution and organization of microfilament proteins during cell transformation. Boschek, C.B., Jockusch, B.M., Friis, R.R., Back, R., Grundmann, E., Bauer, H. Cell (1981) [Pubmed]
  27. Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Willingham, M.C., Yamada, K.M., Yamada, S.S., Pouysségur, J., Pastan, I. Cell (1977) [Pubmed]
  28. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Hartwig, J.H., Bokoch, G.M., Carpenter, C.L., Janmey, P.A., Taylor, L.A., Toker, A., Stossel, T.P. Cell (1995) [Pubmed]
  29. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M.H., Parsons, R. Science (1997) [Pubmed]
  30. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J., Soriano, P. Cell (1996) [Pubmed]
  31. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Miki, H., Sasaki, T., Takai, Y., Takenawa, T. Nature (1998) [Pubmed]
  32. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Pashmforoush, M., Pomiès, P., Peterson, K.L., Kubalak, S., Ross, J., Hefti, A., Aebi, U., Beckerle, M.C., Chien, K.R. Nat. Med. (2001) [Pubmed]
  33. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Bose, A., Guilherme, A., Robida, S.I., Nicoloro, S.M., Zhou, Q.L., Jiang, Z.Y., Pomerleau, D.P., Czech, M.P. Nature (2002) [Pubmed]
  34. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J., Williams, L.T. Science (1997) [Pubmed]
  35. Nerve growth factor triggers microfilament assembly and paxillin phosphorylation in human B lymphocytes. Melamed, I., Turner, C.E., Aktories, K., Kaplan, D.R., Gelfand, E.W. J. Exp. Med. (1995) [Pubmed]
  36. Anticytoskeletal autoantibody to microfilament anchorage sites recognizes novel focal contact proteins. Senécal, J.L., Fortin, S., Roussin, A., Joyal, F. J. Clin. Invest. (1987) [Pubmed]
  37. Actin filament destruction by osmium tetroxide. Maupin-Szamier, P., Pollard, T.D. J. Cell Biol. (1978) [Pubmed]
  38. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. Michele, D.E., Albayya, F.P., Metzger, J.M. J. Cell Biol. (1999) [Pubmed]
WikiGenes - Universities