The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria.

A quantitative framework was developed which estimates mercury methylation rates (MMR) in sediment cores based on measured sulfate reduction rates (SRR) and the community composition sulfate-reducing bacterial consortia. MMR and SRR as well as group-specific 16S rRNA concentrations (as quantified by probe signal) associated with sulfate-reducing bacteria (SRB) were measured in triplicate cores of saltmarsh sediments. Utilizing previously documented conversion factors in conjunction with field observations of sulfate reduction, MMR were calculated, and the results were compared to experimentally derived measurements of MMR. Using our novel field data collected in saltmarsh sediment where sulfate reduction activity is high, calculated and independently measured MMR results were consistently within an order of magnitude and displayed similar trends with sediment depth. In an estuarine sediment where sulfate reduction activity was low, calculated and observed MMR diverged by greater than an order of magnitude, but again trends with depth were similar. We have expanded the small database generated to date on mercury methylation in sulfur-rich marine sediments. The quantitative frameworkwe have developed further elucidates the coupling of mercury methylation to sulfate reduction by basing calculated rates of mercury methylation on the activity and community composition of sulfate-reducing bacteria. The quantitative framework may also provide a promising alternative to the difficult and hazardous determination of MMR using radiolabeled mercury.[1]


WikiGenes - Universities