The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Methylation


Psychiatry related information on Methylation


High impact information on Methylation

  • Large-genome eukaryotes use heritable cytosine methylation to silence promoters, especially those associated with transposons and imprinted genes [11].
  • Two methyltransferases from archaebacteria that catalyze methylation of mercaptoethanesulfonate (coenzyme M) during methanogenesis have also been shown to contain histidine-ligated cobamides [12].
  • Thymidylate synthase (TS, EC catalyzes the reductive methylation of dUMP by CH2H4folate to produce dTMP and H2folate [13].
  • Carnitine biosynthesis is initiated by methylation of lysine [14].
  • We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs [15].

Chemical compound and disease context of Methylation


Biological context of Methylation

  • Cytosine methylation does not reinforce or replace ancestral gene regulation pathways but instead endows methylated genomes with the ability to repress specific promoters in a manner that is buffered against changes in the internal and external environment [11].
  • Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities [21].
  • NoRC mediates rDNA silencing by recruiting DNA methyltransferase and histone deacetylase activity to the rDNA promoter, thus establishing structural characteristics of heterochromatin such as DNA methylation, histone hypoacetylation and methylation of the Lys9 residue of histone H3 [22].
  • In Sp1-/- embryos, the expression of many putative target genes, including cell cycle-regulated genes, is not affected, CpG islands remain methylation free, and active chromatin is formed at the globin loci [23].
  • These results indicate an activator-based mechanism for joint MLL1 and MOF recruitment and targeted methylation and acetylation and provide a molecular explanation for the closely correlated distribution of H3 K4 methylation and H4 K16 acetylation on active genes [24].

Anatomical context of Methylation

  • We now show that the pattern of differential methylation in the 5' portion of H19 is established in the gametes and a subset is maintained in the pre-implantation embryo [25].
  • We report that CpG island methylation, an epigenetic modification of DNA known to correlate closely with silencing of gene transcription, appears in the oestrogen receptor (ER) gene in a subpopulation of cells which increases as a direct function of age in human colonic mucosa [26].
  • Although genomic methylation patterns were established normally in Dnmt1o-deficient oocytes, embryos derived from such oocytes showed a loss of allele-specific expression and methylation at certain imprinted loci [27].
  • Here we show that in the affected individual, in a transgenic model and in differentiating embryonic stem cells, transcription of antisense RNA mediates silencing and methylation of the associated CpG island [28].
  • We conclude that methylation at Hpa II sites is replicated by these cultured cells but not with 100% fidelity [29].

Associations of Methylation with chemical compounds


Gene context of Methylation


Analytical, diagnostic and therapeutic context of Methylation


  1. The methyl-accepting chemotaxis proteins of E. coli: a repellent-stimulated, covalent modification, distinct from methylation. Rollins, C., Dahlquist, F.W. Cell (1981) [Pubmed]
  2. CpG island hypermethylation is maintained in human colorectal cancer cells after RNAi-mediated depletion of DNMT1. Ting, A.H., Jair, K.W., Suzuki, H., Yen, R.W., Baylin, S.B., Schuebel, K.E. Nat. Genet. (2004) [Pubmed]
  3. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S.N., Hidalgo, O.F., Vanaclocha, V., Baylin, S.B., Herman, J.G. N. Engl. J. Med. (2000) [Pubmed]
  4. Partially deficient methylation of cytosine in DNA at CCATGG sites stimulates genetic recombination of bacteriophage lambda. Korba, B.E., Hays, J.B. Cell (1982) [Pubmed]
  5. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG-repeat. Ashley, C.T., Sutcliffe, J.S., Kunst, C.B., Leiner, H.A., Eichler, E.E., Nelson, D.L., Warren, S.T. Nat. Genet. (1993) [Pubmed]
  6. DNA cytosine methylation in brain of patients with Alzheimer's disease. Schwob, N.G., Nalbantoglu, J., Hastings, K.E., Mikkelsen, T., Cashman, N.R. Ann. Neurol. (1990) [Pubmed]
  7. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Marsit, C.J., Liu, M., Nelson, H.H., Posner, M., Suzuki, M., Kelsey, K.T. Oncogene (2004) [Pubmed]
  8. ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase II stage mouse oocytes. De La Fuente, R., Viveiros, M.M., Wigglesworth, K., Eppig, J.J. Dev. Biol. (2004) [Pubmed]
  9. Treatment of unresectable glioblastoma multiforme. Nieder, C., Grosu, A.L., Astner, S., Molls, M. Anticancer Res. (2005) [Pubmed]
  10. Altered methylation pattern of the G6 PD promoter in Rett syndrome. Huppke, P., Bohlander, S., Krämer, N., Laccone, F., Hanefeld, F. Neuropediatrics. (2002) [Pubmed]
  11. Eukaryotic cytosine methyltransferases. Goll, M.G., Bestor, T.H. Annu. Rev. Biochem. (2005) [Pubmed]
  12. Structure-based perspectives on B12-dependent enzymes. Ludwig, M.L., Matthews, R.G. Annu. Rev. Biochem. (1997) [Pubmed]
  13. The catalytic mechanism and structure of thymidylate synthase. Carreras, C.W., Santi, D.V. Annu. Rev. Biochem. (1995) [Pubmed]
  14. Carnitine--metabolism and functions. Bremer, J. Physiol. Rev. (1983) [Pubmed]
  15. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Williamson, C.M., Turner, M.D., Ball, S.T., Nottingham, W.T., Glenister, P., Fray, M., Tymowska-Lalanne, Z., Plagge, A., Powles-Glover, N., Kelsey, G., Maconochie, M., Peters, J. Nat. Genet. (2006) [Pubmed]
  16. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., Cordón-Cardó, C., Lowe, S.W. Nature (2001) [Pubmed]
  17. Detection of polymorphisms at cytosine phosphoguanadine dinucleotides and diagnosis of haemophilia B carriers. Winship, P.R., Rees, D.J., Alkan, M. Lancet (1989) [Pubmed]
  18. Evidence of brain methyltransferase inhibition and early brain involvement in HIV-positive patients. Keating, J.N., Trimble, K.C., Mulcahy, F., Scott, J.M., Weir, D.G. Lancet (1991) [Pubmed]
  19. Soybean GH3 promoter contains multiple auxin-inducible elements. Liu, Z.B., Ulmasov, T., Shi, X., Hagen, G., Guilfoyle, T.J. Plant Cell (1994) [Pubmed]
  20. Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Liu, C.J., Dixon, R.A. Plant Cell (2001) [Pubmed]
  21. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Sanders, S.L., Portoso, M., Mata, J., Bähler, J., Allshire, R.C., Kouzarides, T. Cell (2004) [Pubmed]
  22. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Santoro, R., Li, J., Grummt, I. Nat. Genet. (2002) [Pubmed]
  23. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Marin, M., Karis, A., Visser, P., Grosveld, F., Philipsen, S. Cell (1997) [Pubmed]
  24. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Dou, Y., Milne, T.A., Tackett, A.J., Smith, E.R., Fukuda, A., Wysocka, J., Allis, C.D., Chait, B.T., Hess, J.L., Roeder, R.G. Cell (2005) [Pubmed]
  25. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Tremblay, K.D., Saam, J.R., Ingram, R.S., Tilghman, S.M., Bartolomei, M.S. Nat. Genet. (1995) [Pubmed]
  26. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Issa, J.P., Ottaviano, Y.L., Celano, P., Hamilton, S.R., Davidson, N.E., Baylin, S.B. Nat. Genet. (1994) [Pubmed]
  27. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Howell, C.Y., Bestor, T.H., Ding, F., Latham, K.E., Mertineit, C., Trasler, J.M., Chaillet, J.R. Cell (2001) [Pubmed]
  28. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Tufarelli, C., Stanley, J.A., Garrick, D., Sharpe, J.A., Ayyub, H., Wood, W.G., Higgs, D.R. Nat. Genet. (2003) [Pubmed]
  29. The somatic replication of DNA methylation. Wigler, M., Levy, D., Perucho, M. Cell (1981) [Pubmed]
  30. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Ohki, I., Shimotake, N., Fujita, N., Jee, J., Ikegami, T., Nakao, M., Shirakawa, M. Cell (2001) [Pubmed]
  31. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Zhang, X., Tamaru, H., Khan, S.I., Horton, J.R., Keefe, L.J., Selker, E.U., Cheng, X. Cell (2002) [Pubmed]
  32. Histone deimination antagonizes arginine methylation. Cuthbert, G.L., Daujat, S., Snowden, A.W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., Schneider, R., Gregory, P.D., Tempst, P., Bannister, A.J., Kouzarides, T. Cell (2004) [Pubmed]
  33. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Goyette, P., Sumner, J.S., Milos, R., Duncan, A.M., Rosenblatt, D.S., Matthews, R.G., Rozen, R. Nat. Genet. (1994) [Pubmed]
  34. Influence of cytoskeletal assembly on phosphatidylcholine synthesis in intact phagocytic cells. Pike, M.C., Kredich, N.M., Snyderman, R. Cell (1980) [Pubmed]
  35. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Robert, M.F., Morin, S., Beaulieu, N., Gauthier, F., Chute, I.C., Barsalou, A., MacLeod, A.R. Nat. Genet. (2003) [Pubmed]
  36. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Lyko, F., Ramsahoye, B.H., Kashevsky, H., Tudor, M., Mastrangelo, M.A., Orr-Weaver, T.L., Jaenisch, R. Nat. Genet. (1999) [Pubmed]
  37. CTCF maintains differential methylation at the Igf2/H19 locus. Schoenherr, C.J., Levorse, J.M., Tilghman, S.M. Nat. Genet. (2003) [Pubmed]
  38. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Mowen, K.A., Tang, J., Zhu, W., Schurter, B.T., Shuai, K., Herschman, H.R., David, M. Cell (2001) [Pubmed]
  39. Absence of expression of the FMR-1 gene in fragile X syndrome. Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T., Oostra, B.A., Caskey, C.T., Nelson, D.L. Cell (1991) [Pubmed]
  40. Cellular differentiation, cytidine analogs and DNA methylation. Jones, P.A., Taylor, S.M. Cell (1980) [Pubmed]
  41. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Beisel, C., Imhof, A., Greene, J., Kremmer, E., Sauer, F. Nature (2002) [Pubmed]
  42. Rb targets histone H3 methylation and HP1 to promoters. Nielsen, S.J., Schneider, R., Bauer, U.M., Bannister, A.J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R.E., Kouzarides, T. Nature (2001) [Pubmed]
  43. Switch recombination breakpoints are strictly correlated with DNA recognition motifs for immunoglobulin S gamma 3 DNA-binding proteins. Wuerffel, R., Jamieson, C.E., Morgan, L., Merkulov, G.V., Sen, R., Kenter, A.L. J. Exp. Med. (1992) [Pubmed]
WikiGenes - Universities