The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Elongation factor Ts can act as a steric chaperone by increasing the solubility of nucleotide binding-impaired elongation factor-Tu.

Several elongation factor (EF) Tu mutants (T25A, H22Y/T25S, D80N, D138N) that have impaired nucleotide binding show decreased solubility on overexpression in the E. coli cell, an indication that they do not fold correctly. Moreover, EF-Tu[T25A] and EF-Tu[D80N] were shown to inhibit cell growth on expression, an effect attributed to their sequestration of EF-Ts [Krab, I. M., and Parmeggiani, A. (1999) J. Biol. Chem. 274, 11132--11138; Krab, I. M., and Parmeggiani, A. (1999) Biochemistry 38, 13035--13041]. We present here results showing that the co-overexpression of EF-Ts at a 1:1 ratio dramatically improves the solubility of mutant EF-Tu, although in the case of EF-Tu[D138N]--which cannot at all bind the nucleotides available in the cell--this is a slow process. Moreover, with co-overexpression of EF-Ts, the mentioned growth inhibition is relieved. We conclude that for the formation of a correct EF-Tu structure the nucleotide plays an important role as a "folding nucleus", and also that in its absence EF-Ts can act as a folding template or steric chaperone for the correct folding of EF-Tu.[1]

References

 
WikiGenes - Universities