The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

tsf  -  elongation factor Ts

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of tsf

 

High impact information on tsf

  • The interaction of EF-Ts with EF-Tu results principally in the disruption of the Mg2+ ion binding site, thereby reducing the affinity of EF-Tu for guanine nucleotides [6].
  • Mutation of several residues in EF-Tsmt corresponding to amino acids important for the activity of E. coli EF-Ts has little or no effect on the activity of the mitochondrial factor, suggesting that these factors may use somewhat different mechanisms to promote guanine nucleotide exchange [7].
  • The mammalian mitochondrial complex consisting of elongation factors EF-Tu and EF-Ts (EF-Tu.Tsmt) is capable of efficiently binding aminoacyl-tRNA to the ribosome in the presence and absence of guanine nucleotides [8].
  • Co-transformation of these cells with a compatible plasmid bearing the EF-Ts gene reverses this growth problem [9].
  • Animal mitochondrial protein synthesis factors elongation factor (EF) Tu and EF-Ts have been purified as an EF-Tu.Ts complex from crude extracts of bovine liver mitochondria [10].
 

Chemical compound and disease context of tsf

 

Biological context of tsf

  • The data allow one to infer the amino acid sequences of S2 and EF-Ts [14].
  • We report the nucleotide sequence of the four min region of the Escherichia coli genetic map that includes the genes for ribosomal protein S2 (rpsB) and translation elongation factor EF-Ts (tsf), and the possible location of regulatory sites within this two gene operon [14].
  • Moreover, EF-Tu[T25A] and EF-Tu[D80N] were shown to inhibit cell growth on expression, an effect attributed to their sequestration of EF-Ts [Krab, I. M., and Parmeggiani, A. (1999) J. Biol. Chem. 274, 11132--11138; Krab, I. M., and Parmeggiani, A. (1999) Biochemistry 38, 13035--13041] [15].
  • Phage Qbeta RNA replicase consists of four nonidentical subunits three of which are required for poly(C)-directed synthesis of poly(G): a phage-coded polypeptide and the two host-supplied protein biosynthesis elongation factors EF-Tu and EF-Ts [11].
  • Determination of the kinetics of guanine nucleotide exchange on EF-Tu and EF-Ts: continuing uncertainties [16].
 

Anatomical context of tsf

 

Associations of tsf with chemical compounds

  • Replacing lysine by arginine lowers the protein's affinity for GDP by about 20-fold relative to the change in its affinity for EF-Ts [9].
  • Furthermore, RNA does not allow the release of EF-Ts from EF-Tu by GTP as measured by sensitivity of EF-Ts activity to N-ethylmaleimide [19].
  • Like EF-Tu(DeltaC).GTP, EF-Tu(DeltaM).GTP was, however, able to bind efficiently kirromycin and enacyloxin IIa, as determined via competition with EF-Ts [20].
  • EF-Ts in excess failed to dissociate kirromycin from the EF-TuH118G x kirromycin complex and to form a stable complex with EF-TuH118G on column chromatography [12].
  • Ethylene-induced ripening in tomato (Lycopersicon esculentum) resulted in the accumulation of a transcript designated LeEF-Ts(mt) that encodes a protein with significant homology to bacterial Ts translational elongation factor (EF-Ts) [21].
 

Regulatory relationships of tsf

  • The effects of these mutations on the ability of EF-Ts to stimulate GDP exchange with EF-Tu.GDP and on its ability to stimulate the activity of EF-Tu in polymerization were tested [22].
 

Other interactions of tsf

  • The two EF-Ts molecules form a tight dimer, but there is little contact between the two EF-Tu molecules [6].
  • 90% of the EF-Tu is found in the ribosome-free fraction of the cell and 75% of this is free of other macromolecules as judged by chromatography on Sephadex G-100; about 10% is bound to the elongation factor EF-Ts and the remaining 10-15% is eluted from Sephadex G-100 earlier than expected for its molecular weight [23].
 

Analytical, diagnostic and therapeutic context of tsf

References

  1. Identification of genes for elongation factor Ts and ribosomal protein S2 in E. coli. Yamamoto, M., Strycharz, W.A., Nomura, M. Cell (1976) [Pubmed]
  2. Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus. Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M., Sigler, P.B. Nat. Struct. Biol. (1997) [Pubmed]
  3. Q beta replicase containing a Bacillus stearothermophilus elongation factor. Stringfellow, L., Blumenthal, T. J. Bacteriol. (1983) [Pubmed]
  4. Evidence that a single EF-Ts suffices for the recycling of multiple and divergent EF-Tu species in Streptomyces coelicolor A3(2) and Streptomyces ramocissimus. Hoogvliet, G., van Wezel, G.P., Kraal, B. Microbiology (Reading, Engl.) (1999) [Pubmed]
  5. cDNA sequence of a translational elongation factor Ts homologue from Caenorhabditis elegans: mitochondrial factor-specific features found in the nematode homologue peptide. Watanabe, Y., Kita, K., Ueda, T., Watanabe, K. Biochim. Biophys. Acta (1997) [Pubmed]
  6. The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution. Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S., Leberman, R. Nature (1996) [Pubmed]
  7. Roles of residues in mammalian mitochondrial elongation factor Ts in the interaction with mitochondrial and bacterial elongation factor Tu. Zhang, Y., Spremulli, L.L. J. Biol. Chem. (1998) [Pubmed]
  8. Interaction of animal mitochondrial EF-Tu.EF-Ts with aminoacyl-tRNA, guanine nucleotides, and ribosomes. Schwartzbach, C.J., Spremulli, L.L. J. Biol. Chem. (1991) [Pubmed]
  9. Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins. Hwang, Y.W., Sanchez, A., Miller, D.L. J. Biol. Chem. (1989) [Pubmed]
  10. Bovine mitochondrial protein synthesis elongation factors. Identification and initial characterization of an elongation factor Tu-elongation factor Ts complex. Schwartzbach, C.J., Spremulli, L.L. J. Biol. Chem. (1989) [Pubmed]
  11. Renaturation of a multisubunit multiactivity enzyme complex: recovery of phage Qbeta RNA replicase, EF-Tu, and EF-Ts activities after denaturation in urea. Blumenthal, T., Landers, T.A. Biochemistry (1976) [Pubmed]
  12. Interaction of EF-Tu with EF-Ts: substitution of His-118 in EF-Tu destabilizes the EF-Tu x EF-Ts complex but does not prevent EF-Ts from stimulating the release of EF-Tu-bound GDP. Jonák, J., Anborgh, P.H., Parmeggiani, A. FEBS Lett. (1998) [Pubmed]
  13. Elongation factor T from Bacillus stearothermophilus and Escherichia coli. Purification and some properties of EF-Tu and EF-Ts from Bacillus stearothermophilus. Wittinghofer, A., Leberman, R. Eur. J. Biochem. (1976) [Pubmed]
  14. Organization and nucleotide sequence of a new ribosomal operon in Escherichia coli containing the genes for ribosomal protein S2 and elongation factor Ts. An, G., Bendiak, D.S., Mamelak, L.A., Friesen, J.D. Nucleic Acids Res. (1981) [Pubmed]
  15. Elongation factor Ts can act as a steric chaperone by increasing the solubility of nucleotide binding-impaired elongation factor-Tu. Krab, I.M., te Biesebeke, R., Bernardi, A., Parmeggiani, A. Biochemistry (2001) [Pubmed]
  16. Determination of the kinetics of guanine nucleotide exchange on EF-Tu and EF-Ts: continuing uncertainties. Manchester, K.L. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  17. Purification and characterization of Saccharomyces cerevisiae mitochondrial elongation factor Tu. Rosenthal, L.P., Bodley, J.W. J. Biol. Chem. (1987) [Pubmed]
  18. Genetically engineered active Qbeta replicase in rabbit reticulocyte cell-free system: a fusion protein of EF-Tu and EF-Ts is functional as the subunit of Qbeta replicase. Fukano, H., Tamotsu, Z., Eiji, S., Kimitsuna, W., Teruyuki, N. J. Biosci. Bioeng. (2002) [Pubmed]
  19. Function and structure in phage Qbeta RNA replicase. Association of EF-Tu-Ts with the other enzyme subunits. Blumenthal, T., Young, R.A., Brown, S. J. Biol. Chem. (1976) [Pubmed]
  20. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands. Cetin, R., Anborgh, P.H., Cool, R.H., Parmeggiani, A. Biochemistry (1998) [Pubmed]
  21. Tomato EF-Ts(mt), a functional mitochondrial translation elongation factor from higher plants. Benichou, M., Li, Z., Tournier, B., Chaves, A., Zegzouti, H., Jauneau, A., Delalande, C., Latché, A., Bouzayen, M., Spremulli, L.L., Pech, J.C. Plant Mol. Biol. (2003) [Pubmed]
  22. Mutational analysis of the roles of residues in Escherichia coli elongation factor Ts in the interaction with elongation factor Tu. Zhang, Y., Yu, N.J., Spremulli, L.L. J. Biol. Chem. (1998) [Pubmed]
  23. The subcellular distribution and state of the elongation factor Tu in extracts of Escherichia coli B. Furano, A.V. Eur. J. Biochem. (1976) [Pubmed]
  24. Euglena gracilis chloroplast elongation factor Tu. Purification and initial characterization. Sreedharan, S.P., Beck, C.M., Spremulli, L.L. J. Biol. Chem. (1985) [Pubmed]
  25. Crystallization and preliminary x-ray diffraction data of the EF-Tu . EF-Ts (EF-T) complex of Escherichia coli. Leberman, R., Schulz, G.E., Suck, D. FEBS Lett. (1981) [Pubmed]
  26. A transducing bacteriophage lambda carrying the structural gene for elongation factor Ts. Friesen, J.D., Parker, J., Watson, R.J., Bendiak, D., Reeh, S.V., Pedersen, S., Fiil, N.P. Mol. Gen. Genet. (1976) [Pubmed]
  27. Overexpression and purification of Thermus thermophilus elongation factors G, Tu, and Ts from Escherichia coli. Blank, J., Grillenbeck, N.W., Kreutzer, R., Sprinzl, M. Protein Expr. Purif. (1995) [Pubmed]
 
WikiGenes - Universities