The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction.

Taste receptor cells (TRCs) respond to acid stimulation, initiating perception of sour taste. Paradoxically, the pH of weak acidic stimuli correlates poorly with the perception of their sourness. A fundamental issue surrounding sour taste reception is the identity of the sour stimulus. We tested the hypothesis that acids induce sour taste perception by penetrating plasma membranes as H(+) ions or as undissociated molecules and decreasing the intracellular pH (pH(i)) of TRCs. Our data suggest that taste nerve responses to weak acids (acetic acid and CO(2)) are independent of stimulus pH but strongly correlate with the intracellular acidification of polarized TRCs. Taste nerve responses to CO(2) were voltage sensitive and were blocked with MK-417, a specific blocker of carbonic anhydrase. Strong acids (HCl) decrease pH(i) in a subset of TRCs that contain a pathway for H(+) entry. Both the apical membrane and the paracellular shunt pathway restrict H(+) entry such that a large decrease in apical pH is translated into a relatively small change in TRC pH(i) within the physiological range. We conclude that a decrease in TRC pH(i) is the proximate stimulus in rat sour taste transduction.[1]

References

  1. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Lyall, V., Alam, R.I., Phan, D.Q., Ereso, G.L., Phan, T.H., Malik, S.A., Montrose, M.H., Chu, S., Heck, G.L., Feldman, G.M., DeSimone, J.A. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
 
WikiGenes - Universities