Double-quantum-filtered rotational-resonance MAS NMR in the presence of large chemical shielding anisotropies.
Double-quantum filtration under rotational resonance MAS NMR conditions where the chemical shielding anisotropies involved exceed the differences in isotropic chemical shielding is considered by means of numerical simulations and (13)C MAS NMR experiments. The responses of two different pulse sequences, suitable for double-quantum filtration specifically under rotational resonance conditions, to large chemical shielding anisotropies are compared. In the presence of large chemical shielding anisotropies a very recently introduced pulse sequence (T. Karlsson, M. Edén, H. Luthman, and M. H. Levitt, J. Magn. Reson. 145, 95-107, 2000) suffers losses in double-quantum-filtration efficiencies. The double-quantum-filtration efficiency of another pulse sequence (N. C. Nielsen, F. Creuzet, R. G. Griffin, and M. H. Levitt, J. Chem. Phys. 96, 5668-5677, 1992) is less afflicted by the presence of large chemical shielding anisotropies. Both sequences deliver double-quantum-filtered lineshapes that sensitively reflect chemical shielding tensor orientations. It is further shown that double-quantum-filtered rotational-resonance lineshapes of spin systems composed of more than two spins offer a suitable experimental approach for determining chemical shielding tensor orientations for cases where conventional rotational-resonance experiments are not applicable due to the presence of additional background resonances.[1]References
- Double-quantum-filtered rotational-resonance MAS NMR in the presence of large chemical shielding anisotropies. Bechmann, M., Helluy, X., Sebald, A. J. Magn. Reson. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg