The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Anisotropy

  • Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis [1].

High impact information on Anisotropy

  • The SWAN (Solar Wind ANisotropies) Lyman-alpha all-sky camera on the SOHO spacecraft observed the hydrogen coma of comet C/1999 S4 (LINEAR) from the end of May through mid-August 2000 [2].
  • From measurements of orientation anisotropies, we conclude that the slower 75-ps process requires the reorientation of E before ET, similar to E/nucleotide complexes in water [3].
  • From the magnitudes of the estimated chemical shift anisotropies, it is predicted that direct observation of selenium in the native enzyme will be feasible if the enzyme concentration can be increased to 0.25 mM tetrameric glutathione peroxidase [4].
  • The fluidity of the vesicles was assessed by measuring the fluorescence lifetimes, steady state anisotropies, and differential phase fluorometry of diphenylhexatriene embedded in the vesicles [5].
  • We also used the steady state anisotropies, measured under conditions of oxygen quenching, to estimate the motional freedom of the tyrosine residues [6].

Biological context of Anisotropy


Anatomical context of Anisotropy


Associations of Anisotropy with chemical compounds


Gene context of Anisotropy

  • The peaks in this doublet have remarkably different effective chemical shift anisotropies due to the interplay of the CSA, dipolar coupling, and J-coupling tensors [18].
  • Motivated by inelastic neutron scattering data on Cs2CuCl4, we explore spin-1/2 triangular lattice antiferromagnets with both spatial and easy-plane exchange anisotropies, the latter due to an observed Dzyaloshinskii-Moriya interaction [19].
  • Model-independent analysis of the anisotropies indicates that cofilin increases the rates of the microsecond rotational motions of actin [20].
  • Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers [21].
  • Double-quantum-filtered rotational-resonance MAS NMR in the presence of large chemical shielding anisotropies [22].


  1. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles. Semchyschyn, D.J., Macdonald, P.M. Magnetic resonance in chemistry : MRC. (2004) [Pubmed]
  2. Water production of comet C/1999 S4 (LINEAR) observed with the SWAN instrument. Mäkinen, J.T., Bertaux, J.L., Combi, M.R., Quémerais, E. Science (2001) [Pubmed]
  3. Femtosecond dynamics of DNA-mediated electron transfer. Wan, C., Fiebig, T., Kelley, S.O., Treadway, C.R., Barton, J.K., Zewail, A.H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  4. 77Se NMR characterization of 77Se-labeled ovine erythrocyte glutathione peroxidase. Gettins, P., Crews, B.C. J. Biol. Chem. (1991) [Pubmed]
  5. Lipid mobility in the assembly and expression of the activity of the prothrombinase complex. Higgins, D.L., Callahan, P.J., Prendergast, F.G., Nesheim, M.E., Mann, K.G. J. Biol. Chem. (1985) [Pubmed]
  6. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. Lakowicz, J.R., Maliwal, B.P. J. Biol. Chem. (1983) [Pubmed]
  7. Effects of hydrogen peroxide on membrane fluidity and Ca(2+)-transporting ATPase activity of rabbit myocardial sarcoplasmic reticulum. Su, Z., Yan, X.D., Li, Y.J., Chen, X. Zhongguo yao li xue bao = Acta pharmacologica Sinica. (1993) [Pubmed]
  8. Determination of the orientation and dynamics of ergosterol in model membranes using uniform 13C labeling and dynamically averaged 13C chemical shift anisotropies as experimental restraints. Soubias, O., Jolibois, F., Massou, S., Milon, A., Réat, V. Biophys. J. (2005) [Pubmed]
  9. Reorientations in the bacteriorhodopsin photocycle. Song, Q., Harms, G.S., Wan, C., Johnson, C.K. Biochemistry (1994) [Pubmed]
  10. Chemical shift anisotropies obtained from aligned egg yolk phosphatidylcholine by solid-state 13C nuclear magnetic resonance. Braach-Maksvytis, V.L., Cornell, B.A. Biophys. J. (1988) [Pubmed]
  11. Very low osmotic water permeability and membrane fluidity in isolated toad bladder granules. Verkman, A.S., Masur, S.K. J. Membr. Biol. (1988) [Pubmed]
  12. Effects of alcohols on fluorescence anisotropies of diphenylhexatriene and its derivatives in bovine blood platelets: relationships of the depth-dependent change in membrane fluidity by alcohols with their effects on platelet aggregation and adenylate cyclase activity. Kitagawa, S., Hirata, H. Biochim. Biophys. Acta (1992) [Pubmed]
  13. Probing semiconductor gap states with resonant tunneling. Loth, S., Wenderoth, M., Winking, L., Ulbrich, R.G., Malzer, S., Döhler, G.H. Phys. Rev. Lett. (2006) [Pubmed]
  14. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. Wu, Y., Glimcher, M.J., Rey, C., Ackerman, J.L. J. Mol. Biol. (1994) [Pubmed]
  15. Spectroscopic examination of the active site of bovine ferrochelatase. Dailey, H.A. Biochemistry (1985) [Pubmed]
  16. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies. Sanders, C.R. Biophys. J. (1993) [Pubmed]
  17. Restricted motion of photoexcited bacteriorhodopsin in purple membrane containing ethanol. Kikukawa, T., Araiso, T., Shimozawa, T., Mukasa, K., Kamo, N. Biophys. J. (1997) [Pubmed]
  18. Combined solid state NMR and X-ray diffraction investigation of the local structure of the five-coordinate silicon in fluoride-containing as-synthesized STF zeolite. Fyfe, C.A., Brouwer, D.H., Lewis, A.R., Villaescusa, L.A., Morris, R.E. J. Am. Chem. Soc. (2002) [Pubmed]
  19. Algebraic vortex liquid in spin-1/2 triangular antiferromagnets: scenario for Cs2CuCl4. Alicea, J., Motrunich, O.I., Fisher, M.P. Phys. Rev. Lett. (2005) [Pubmed]
  20. Cofilin increases the torsional flexibility and dynamics of actin filaments. Prochniewicz, E., Janson, N., Thomas, D.D., De la Cruz, E.M. J. Mol. Biol. (2005) [Pubmed]
  21. Immobilization and aggregation of the antimicrobial peptide protegrin-1 in lipid bilayers investigated by solid-state NMR. Buffy, J.J., Waring, A.J., Lehrer, R.I., Hong, M. Biochemistry (2003) [Pubmed]
  22. Double-quantum-filtered rotational-resonance MAS NMR in the presence of large chemical shielding anisotropies. Bechmann, M., Helluy, X., Sebald, A. J. Magn. Reson. (2001) [Pubmed]
WikiGenes - Universities