The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Proteome analysis and morphological studies reveal multiple effects of the immunosuppressive drug mycophenolic acid specifically resulting from guanylic nucleotide depletion.

Mycophenolic acid (MPA), one of the most promising immunosuppressive drugs recently developed, is a potent inhibitor of IMP dehydrogenase, the first committed step toward GMP synthesis. We found that all the drug effects on yeast cells were prevented by bypassing GMP synthesis, thus confirming the high specificity of MPA. Although the primary target of MPA is clearly identified, we aimed to further understand how GTP depletion leads to growth arrest and developed a new approach based on proteome analysis combined with overexpression studies. Essential proteins down-expressed in the presence of MPA were identified by protein two-dimensional gel analysis and subsequently overexpressed in yeast. Two such proteins, Cdc37p and Sup45p, when overexpressed allowed partial relief of MPA toxicity, strongly suggesting that their lower amount after MPA treatment significantly contributed to the MPA effect. These conserved proteins involved in cell cycle progression and translation are therefore important secondary targets for MPA. Our data establish that MPA effects occur through inhibition of a unique primary target resulting in guanine nucleotides depletion, thereby affecting multiple cellular processes.[1]

References

 
WikiGenes - Universities