The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation.

Ero1 and Pdi1 are essential elements of the pathway for the formation of disulphide bonds within the endoplasmic reticulum (ER). By screening for alternative oxidation pathways in Saccharomyces cerevisiae, we identified ERV2 as a gene that when overexpressed can restore viability and disulphide bond formation to an ero1-1 mutant strain. ERV2 encodes a luminal ER protein of relative molecular mass 22,000. Purified recombinant Erv2p is a flavoenzyme that can catalyse O2-dependent formation of disulphide bonds. Erv2p transfers oxidizing equivalents to Pdi1p by a dithiol-disulphide exchange reaction, indicating that the Erv2p-dependent pathway for disulphide bond formation closely parallels that of the previously identified Ero1p-dependent pathway.[1]

References

  1. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Sevier, C.S., Cuozzo, J.W., Vala, A., Aslund, F., Kaiser, C.A. Nat. Cell Biol. (2001) [Pubmed]
 
WikiGenes - Universities