The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Inhibition of cyclic GMP hydrolysis in human corpus cavernosum smooth muscle cells by vardenafil, a novel, selective phosphodiesterase type 5 inhibitor.

One of the key mediators of penile erectile function is nitric oxide (NO), which activates soluble guanylyl cyclase within the smooth muscle of erectile tissue and stimulates the production of cGMP. In addition to synthesis by cyclases, intracellular cGMP concentrations are tightly regulated by phosphodiesterases, which hydrolyze and inactivate cyclic nucleotides. In this study, we compared the inhibition of cGMP hydrolysis by vardenafil and sildenafil; two inhibitors selective for phosphodiesterase type 5 (PDE5). Vardenafil is a novel, high affinity PDE5 inhibitor currently under clinical development. In soluble extracts of human corpus cavernosum smooth muscle cells, vardenafil and sildenafil effectively inhibited cGMP hydrolysis at substrate concentrations of 1, 5 and 10 microM cGMP. The IC50 values for vardenafil were approximately 5-fold lower than for sildenafil at the substrate concentrations tested. Dixon plot analyses of the inhibition data demonstrated that vardenafil had a smaller inhibition constant (Ki = 4.5 nM) than sildenafil (Ki = 14.7 nM) in the same cellular extracts. In intact cells, 10 microM of the nitric oxide donor sodium nitroprusside resulted in a minimal (17%) increase in cGMP, relative to basal levels (321 +/- 65 fmol/mg prot). Treatment of cells with 10, 50 or 100 nM vardenafil, in the presence of 10 microM sodium nitroprusside, elevated cGMP levels in a dose dependent fashion, from 63% to 137% of basal levels. Equimolar concentrations of sildenafil also caused dose dependent increases in intracellular cGMP, but to a lesser extent (27-60%). These observations suggest that vardenafil is a more potent PDE5 inhibitor, than sildenafil in vitro. The more pronounced increase of cGMP in the presence of NO in intact cells suggests that vardenafil will be effective at lower doses than sildenafil under clinical conditions.[1]

References

 
WikiGenes - Universities