The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells.

The p85- associated phosphatidylinositol (PI) 3-kinase/Akt pathway mediates the oestradiol- induced S-phase entry and cyclin D1 promoter activity in MCF-7 cells. Experiments with Src, p85alpha and Akt dominant-negative forms indicate that in oestradiol-treated cells these signalling effectors target the cyclin D1 promoter. Oestradiol acutely increases PI3-kinase and Akt activities in MCF-7 cells. In NIH 3T3 cells expressing ERalpha, a dominant-negative p85 suppresses hormone stimulation of Akt. The Src inhibitor, PP1, prevents hormone stimulation of Akt and PI3-kinase activities in MCF-7 cells. In turn, stimulation of Src activity is abolished in ERalpha-expressing NIH 3T3 fibroblasts by co-transfection of the dominant-negative p85alpha and in MCF-7 cells by the PI3-kinase inhibitor, LY294002. These findings indicate a novel reciprocal cross-talk between PI3-kinase and Src. Hormone stimulation of MCF-7 cells rapidly triggers association of ERalpha with Src and p85. In vitro these proteins are assembled in a ternary complex with a stronger association than that of the binary complexes composed by the same partners. The ternary complex probably favours hormone activation of Src- and PI3-kinase-dependent pathways, which converge on cell cycle progression.[1]

References

  1. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. Castoria, G., Migliaccio, A., Bilancio, A., Di Domenico, M., de Falco, A., Lombardi, M., Fiorentino, R., Varricchio, L., Barone, M.V., Auricchio, F. EMBO J. (2001) [Pubmed]
 
WikiGenes - Universities