Quantitative analysis of tropomyosin linear polymerization equilibrium as a function of ionic strength.
Tropomyosin is a coiled-coil protein that polymerizes by head-to-tail interactions in an ionic strength-dependent manner. We produced a recombinant full-length chicken alpha-tropomyosin containing a 5-hydroxytryptophan residue at position 269 (formerly an alanine), 15 residues from the C terminus, and show that its fluorescence intensity specifically reports tropomyosin head-to-tail interactions. We used this property to quantitatively study the monomer-polymer equilibrium in tropomyosin and to calculate the equilibrium constant of the head-to-tail interaction as a function of ionic strength. Our results show that the affinity constant changes by almost 2 orders of magnitude over an ionic strength range of 50 mm (between I = 0.045 and 0.095). We were also able to calculate the average polymer length as a function of concentration and ionic strength, which is an important parameter in the interpretation of binding isotherms of tropomyosin with other thin filament proteins such as actin and troponin.[1]References
- Quantitative analysis of tropomyosin linear polymerization equilibrium as a function of ionic strength. Sousa, A.D., Farah, C.S. J. Biol. Chem. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









