The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanism underlying histamine-induced intracellular Ca2+ movement in PC3 human prostate cancer cells.

The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells and the underlying mechanism were evaluated using fura-2 as a Ca2+ dye. Histamine at concentrations between 0.1 and 50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1 microM. The [Ca2+]i response comprised an initial rise and a slow decay, which returned to baseline within 3 min. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In the absence of extracellular Ca2+, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 10 microM histamine did not increase [Ca2+]i. After pretreatment with 10 microM histamine in a Ca2+-free medium for several minutes, addition of 3 mM Ca2+ induced [Ca2+]i increases. Histamine (10 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3- methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 10 microM pyrilamine but was not altered by 50 microM cimetidine. Collectively, the present study shows that histamine induced [Ca2+]i transients in PC3 human prostate cancer cells by stimulating H1 histamine receptors leading to Ca2+ release from the endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, and by inducing Ca2+ entry.[1]

References

  1. Mechanism underlying histamine-induced intracellular Ca2+ movement in PC3 human prostate cancer cells. Lee, K.C., Chang, H.T., Chou, K.J., Tang, K.Y., Wang, J.L., Lo, Y.K., Huang, J.K., Chen, W.C., Su, W., Law, Y.P., Jan, C.R. Pharmacol. Res. (2001) [Pubmed]
 
WikiGenes - Universities