The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Inositol 1,4,5-triphosphate     [(1S,2R,3S,4S,5R,6S)-2,4,5- trihydroxy-3,6...

Synonyms: AC1L1ITV, LS-183501, 88269-39-0, myo-Inositol 1,4,5-trisphosphate
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Inositol 1,4,5-triphosphate

 

Psychiatry related information on Inositol 1,4,5-triphosphate

 

High impact information on Inositol 1,4,5-triphosphate

 

Chemical compound and disease context of Inositol 1,4,5-triphosphate

 

Biological context of Inositol 1,4,5-triphosphate

 

Anatomical context of Inositol 1,4,5-triphosphate

 

Associations of Inositol 1,4,5-triphosphate with other chemical compounds

 

Gene context of Inositol 1,4,5-triphosphate

 

Analytical, diagnostic and therapeutic context of Inositol 1,4,5-triphosphate

References

  1. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Prentki, M., Biden, T.J., Janjic, D., Irvine, R.F., Berridge, M.J., Wollheim, C.B. Nature (1984) [Pubmed]
  2. Signal transduction in human epithelial cells infected with attaching and effacing Escherichia coli in vitro. Dytoc, M., Fedorko, L., Sherman, P.M. Gastroenterology (1994) [Pubmed]
  3. Inositol 1,4,5-trisphosphate phosphatase deficiency and malignant hyperpyrexia in swine. Foster, P.S., Gesini, E., Claudianos, C., Hopkinson, K.C., Denborough, M.A. Lancet (1989) [Pubmed]
  4. Loss of inositol 1,4,5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Shibao, K., Hirata, K., Robert, M.E., Nathanson, M.H. Gastroenterology (2003) [Pubmed]
  5. Stimulation of adenosine A1 receptors and bradykinin receptors, which act via different G proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT1 MF-2 smooth muscle cells. Gerwins, P., Fredholm, B.B. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  6. Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons. Hatt, H., Ache, B.W. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Schmidt, H., Schwaller, B., Eilers, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Carboxyl-terminal peptide of beta-amyloid precursor protein blocks inositol 1,4,5-trisphosphate-sensitive Ca2+ release in Xenopus laevis oocytes. Kim, J.H., Rah, J.C., Fraser, S.P., Chang, K.A., Djamgoz, M.B., Suh, Y.H. J. Biol. Chem. (2002) [Pubmed]
  9. Mechanisms of receptor-mediated Ca2+ signaling in rat hepatocytes. Hansen, C.A., Yang, L.J., Williamson, J.R. J. Biol. Chem. (1991) [Pubmed]
  10. Electroconvulsive shock reduces inositol 1,4,5-trisphosphate 3-kinase mRNA expression in rat dentate gyrus. Kim, H., Ko, J.P., Kang, U.G., Park, J.B., Kim, H.L., Lee, Y.H., Kim, Y.S. J. Neurochem. (1994) [Pubmed]
  11. Inositol 1,4,5-trisphosphate receptors as signal integrators. Patterson, R.L., Boehning, D., Snyder, S.H. Annu. Rev. Biochem. (2004) [Pubmed]
  12. Regulation of phosphoinositide-specific phospholipase C. Rhee, S.G. Annu. Rev. Biochem. (2001) [Pubmed]
  13. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Singer, W.D., Brown, H.A., Sternweis, P.C. Annu. Rev. Biochem. (1997) [Pubmed]
  14. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Spät, A., Hunyady, L. Physiol. Rev. (2004) [Pubmed]
  15. Glial calcium: homeostasis and signaling function. Verkhratsky, A., Orkand, R.K., Kettenmann, H. Physiol. Rev. (1998) [Pubmed]
  16. Inhibition of inositol(1,4,5)Trisphosphate generation by endothelin-1 during postischemic reperfusion: A novel antiarrhythmic mechanism. Woodcock, E.A., Reyes, N., Jacobsen, A.N., Du, X.J. Circulation (1999) [Pubmed]
  17. Regulation of bradykinin- and ATP-activated Ca(2+)-permeable channels in rat pheochromocytoma (PC12) cells. Neuhaus, R., Reber, B.F., Reuter, H. J. Neurosci. (1991) [Pubmed]
  18. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. Wojcikiewicz, R.J., Furuichi, T., Nakade, S., Mikoshiba, K., Nahorski, S.R. J. Biol. Chem. (1994) [Pubmed]
  19. Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. Murthy, K.S., Makhlouf, G.M. J. Biol. Chem. (1998) [Pubmed]
  20. Protein kinase C phosphorylates human platelet inositol trisphosphate 5'-phosphomonoesterase, increasing the phosphatase activity. Connolly, T.M., Lawing, W.J., Majerus, P.W. Cell (1986) [Pubmed]
  21. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Walker, J.W., Somlyo, A.V., Goldman, Y.E., Somlyo, A.P., Trentham, D.R. Nature (1987) [Pubmed]
  22. Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate-induced Ca2+ release. Iino, M., Endo, M. Nature (1992) [Pubmed]
  23. Blockade of visual excitation and adaptation in Limulus photoreceptor by GDP-beta-S. Fein, A. Science (1986) [Pubmed]
  24. PDGF-induced activation of phospholipase C is not required for induction of DNA synthesis. Hill, T.D., Dean, N.M., Mordan, L.J., Lau, A.F., Kanemitsu, M.Y., Boynton, A.L. Science (1990) [Pubmed]
  25. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Higo, T., Hattori, M., Nakamura, T., Natsume, T., Michikawa, T., Mikoshiba, K. Cell (2005) [Pubmed]
  26. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Pollak, M.R., Brown, E.M., Estep, H.L., McLaine, P.N., Kifor, O., Park, J., Hebert, S.C., Seidman, C.E., Seidman, J.G. Nat. Genet. (1994) [Pubmed]
  27. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Gerasimenko, O.V., Gerasimenko, J.V., Tepikin, A.V., Petersen, O.H. Cell (1995) [Pubmed]
  28. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Patterson, R.L., van Rossum, D.B., Gill, D.L. Cell (1999) [Pubmed]
  29. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Ehrlich, B.E., Watras, J. Nature (1988) [Pubmed]
  30. Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Worley, P.F., Baraban, J.M., Colvin, J.S., Snyder, S.H. Nature (1987) [Pubmed]
  31. A new type of glutamate receptor linked to inositol phospholipid metabolism. Sugiyama, H., Ito, I., Hirono, C. Nature (1987) [Pubmed]
  32. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Saneyoshi, T., Kume, S., Amasaki, Y., Mikoshiba, K. Nature (2002) [Pubmed]
  33. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Essen, L.O., Perisic, O., Cheung, R., Katan, M., Williams, R.L. Nature (1996) [Pubmed]
  34. Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Bennett, C.F., Balcarek, J.M., Varrichio, A., Crooke, S.T. Nature (1988) [Pubmed]
  35. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Odom, A.R., Stahlberg, A., Wente, S.R., York, J.D. Science (2000) [Pubmed]
  36. Qualitative regulation of B cell antigen receptor signaling by CD19: selective requirement for PI3-kinase activation, inositol-1,4,5-trisphosphate production and Ca2+ mobilization. Buhl, A.M., Pleiman, C.M., Rickert, R.C., Cambier, J.C. J. Exp. Med. (1997) [Pubmed]
  37. Intracellular calcium release and cardiac disease. Wehrens, X.H., Lehnart, S.E., Marks, A.R. Annu. Rev. Physiol. (2005) [Pubmed]
  38. Direct activation of trpl cation channels by G alpha11 subunits. Obukhov, A.G., Harteneck, C., Zobel, A., Harhammer, R., Kalkbrenner, F., Leopoldt, D., Lückhoff, A., Nürnberg, B., Schultz, G. EMBO J. (1996) [Pubmed]
  39. GAP43 stimulates inositol trisphosphate-mediated calcium release in response to hypotonicity. Caprini, M., Gomis, A., Cabedo, H., Planells-Cases, R., Belmonte, C., Viana, F., Ferrer-Montiel, A. EMBO J. (2003) [Pubmed]
  40. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Choi, K.Y., Kim, H.K., Lee, S.Y., Moon, K.H., Sim, S.S., Kim, J.W., Chung, H.K., Rhee, S.G. Science (1990) [Pubmed]
  41. Localized all-or-none calcium liberation by inositol trisphosphate. Parker, I., Ivorra, I. Science (1990) [Pubmed]
  42. Inositol phosphate regulation of voltage-dependent calcium channels in cerebellar granule neurons. De Waard, M., Seagar, M., Feltz, A., Couraud, F. Neuron (1992) [Pubmed]
  43. Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney. Elucidation of signal transduction pathways. Badr, K.F., Murray, J.J., Breyer, M.D., Takahashi, K., Inagami, T., Harris, R.C. J. Clin. Invest. (1989) [Pubmed]
  44. Acetylcholine-induced calcium signaling along the rat colonic crypt axis. Lindqvist, S.M., Sharp, P., Johnson, I.T., Satoh, Y., Williams, M.R. Gastroenterology (1998) [Pubmed]
 
WikiGenes - Universities