The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Spectroscopic study of nitroaromatic-smectite sorption mechanisms.

Sorption mechanisms of 1,3- and 1,4-dinitrobenzene, 1,3,5-trinitrobenzene (TNB), dinitro-o-creasol, and 6-sec-butyl-2,4-dinitrophenol (DINOSEB) on smectite were investigated using FTIR spectroscopy and HPLC methods. A quantitative method was developed that established a direct link between the HPLC and the FTIR data. Freundlich sorption values ranged from 47 (L g(-1)) for 1,3,5-TNB to 3.7 for DINOSEB and showed that the extent of nitroaromatic compounds (NAC) sorption was strongly dependent on the number and position of the nitro substituents as well as other substituents and steric effects. The amount of 1,3,5-TNB sorbed to smectite was strongly influenced by the nature of the exchangeable cation. Furthermore, the exchangeable cation significantly influenced the positions and relative intensities of the vibrational modes of the -NO2 groups. The strongest perturbations were observed for cations with lower enthalpies of hydration (e.g., K+) and included a red shift of the v(asym)(NO) band, a concomitant blue shift of the v(sym)(NO) band. These changes were accompanied by a 2-fold increase in the relative intensity of the v(asym)(NO) band relative to the intensity of the v(sym) (NO) band. Molecular quantum mechanics calculations were used to rationalize frequency shifts in terms of nitroaromatic interactions with interlayer cations. Results indicate that the sorption of NACs to smectite surfaces is controlled largely by the hydration characteristics of the exchangeable cation, which regulates both cation-nitroaromatic complexation and swelling of the smectite.[1]


  1. Spectroscopic study of nitroaromatic-smectite sorption mechanisms. Johnston, C.T., de Oliveira, M.F., Teppen, B.J., Sheng, G., Boyd, S.A. Environ. Sci. Technol. (2001) [Pubmed]
WikiGenes - Universities